Antithetic drawsΒΆ

Calculation of a simple integral using Monte-Carlo integration. It illustrates how to use antithetic draws.

Michel Bierlaire, EPFL Sat Jun 28 2025, 21:08:23

import numpy as np
import pandas as pd
from IPython.core.display_functions import display

from biogeme.biogeme import BIOGEME
from biogeme.database import Database
from biogeme.draws import RandomNumberGeneratorTuple, get_halton_draws
from biogeme.expressions import Draws, MonteCarlo, exp

We create a fake database with one entry, as it is required to store the draws.

df = pd.DataFrame()
df['FakeColumn'] = [1.0]
database = Database('fake_database', df)
def halton13_anti(sample_size: int, number_of_draws: int) -> np.array:
    """The user can define new draws. For example, antithetic Halton
    draws with base 13, skipping the first 10 draws.

    :param sample_size: number of observations for which draws must be
                       generated.
    :param number_of_draws: number of draws to generate.

    """

    # We first generate half of the number of requested draws.
    the_draws = get_halton_draws(
        sample_size, int(number_of_draws / 2.0), base=13, skip=10
    )
    # We complement them with their antithetic version.
    return np.concatenate((the_draws, 1 - the_draws), axis=1)
my_draws = {
    'HALTON13_ANTI': RandomNumberGeneratorTuple(
        halton13_anti,
        'Antithetic Halton draws, base 13, skipping 10',
    )
}

Integrate with antithetic pseudo-random number generator.

integrand = exp(Draws('U', 'UNIFORM_ANTI'))
simulated_integral = MonteCarlo(integrand)

Integrate with antithetic Halton draws, base 13.

integrand_halton13 = exp(Draws('U_halton13', 'HALTON13_ANTI'))
simulated_integral_halton13 = MonteCarlo(integrand_halton13)

Integrate with antithetic MLHS.

integrand_mlhs = exp(Draws('U_mlhs', 'UNIFORM_MLHS_ANTI'))
simulated_integral_mlhs = MonteCarlo(integrand_mlhs)

True value

true_integral = exp(1.0) - 1.0

Number of draws.

R = 2_000_000
error = simulated_integral - true_integral
error_halton13 = simulated_integral_halton13 - true_integral
error_mlhs = simulated_integral_mlhs - true_integral
simulate = {
    'Analytical Integral': true_integral,
    'Simulated Integral': simulated_integral,
    'Error             ': error,
    'Simulated Integral (Halton13)': simulated_integral_halton13,
    'Error (Halton13)             ': error_halton13,
    'Simulated Integral (MLHS)': simulated_integral_mlhs,
    'Error (MLHS)             ': error_mlhs,
}
biosim = BIOGEME(
    database, simulate, random_number_generators=my_draws, number_of_draws=R
)
biosim.modelName = 'b03antithetic'
results = biosim.simulate(the_beta_values={})
display(results)
/Users/bierlair/MyFiles/github/biogeme/docs/source/examples/montecarlo/plot_b03antithetic.py:105: DeprecationWarning: 'modelName' is deprecated. Please use 'model_name' instead.
  biosim.modelName = 'b03antithetic'
   Analytical Integral  ...  Error (MLHS)
0             1.718282  ...              -5.448109e-11

[1 rows x 7 columns]

Reorganize the results.

print(f"Analytical integral: {results.iloc[0]['Analytical Integral']:.6f}")
print(
    f"         \t{'Uniform (Anti)':>15}\t{'Halton13 (Anti)':>15}\t{'MLHS (Anti)':>15}"
)
print(
    f"Simulated\t{results.iloc[0]['Simulated Integral']:>15.6g}\t"
    f"{results.iloc[0]['Simulated Integral (Halton13)']:>15.6g}\t"
    f"{results.iloc[0]['Simulated Integral (MLHS)']:>15.6g}"
)
print(
    f"Error\t\t{results.iloc[0]['Error             ']:>15.6g}\t"
    f"{results.iloc[0]['Error (Halton13)             ']:>15.6g}\t"
    f"{results.iloc[0]['Error (MLHS)             ']:>15.6g}"
)
Analytical integral: 1.718282
                 Uniform (Anti) Halton13 (Anti)     MLHS (Anti)
Simulated               1.71824         1.71828         1.71828
Error              -4.56184e-05     2.88992e-08    -5.44811e-11

Total running time of the script: (0 minutes 0.248 seconds)

Gallery generated by Sphinx-Gallery