Note
Go to the end to download the full example code.
Nested logit modelΒΆ
Example of a nested logit model.
Michel Bierlaire, EPFL Sat Jun 21 2025, 15:33:00
from IPython.core.display_functions import display
from biogeme import biogeme_logging as blog
from biogeme.biogeme import BIOGEME
from biogeme.expressions import Beta
from biogeme.models import lognested
from biogeme.nests import NestsForNestedLogit, OneNestForNestedLogit
from biogeme.results_processing import get_pandas_estimated_parameters
See the data processing script: Data preparation for Swissmetro.
from swissmetro_data import (
CAR_AV_SP,
CAR_CO_SCALED,
CAR_TT_SCALED,
CHOICE,
SM_AV,
SM_COST_SCALED,
SM_TT_SCALED,
TRAIN_AV_SP,
TRAIN_COST_SCALED,
TRAIN_TT_SCALED,
database,
)
logger = blog.get_screen_logger(level=blog.INFO)
logger.info('Example b09nested')
Example b09nested
Parameters to be estimated.
asc_car = Beta('asc_car', 0, None, None, 0)
asc_train = Beta('asc_train', 0, None, None, 0)
asc_sm = Beta('asc_sm', 0, None, None, 1)
b_time = Beta('b_time', 0, None, None, 0)
b_cost = Beta('b_cost', 0, None, None, 0)
nest_parameter = Beta('nest_parameter', 1, 1, 3, 0)
Definition of the utility functions.
v_train = asc_train + b_time * TRAIN_TT_SCALED + b_cost * TRAIN_COST_SCALED
v_swissmetro = asc_sm + b_time * SM_TT_SCALED + b_cost * SM_COST_SCALED
v_car = asc_car + b_time * CAR_TT_SCALED + b_cost * CAR_CO_SCALED
Associate utility functions with the numbering of alternatives.
v = {1: v_train, 2: v_swissmetro, 3: v_car}
Associate the availability conditions with the alternatives.
av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP}
Definition of nests. Only the non-trivial nests must be defined. A trivial nest is a nest containing exactly one alternative. In this example, we create a nest for the existing modes, that is train (1) and car (3).
existing = OneNestForNestedLogit(
nest_param=nest_parameter, list_of_alternatives=[1, 3], name='existing'
)
nests = NestsForNestedLogit(choice_set=list(v), tuple_of_nests=(existing,))
The following elements do not appear in any nest and are assumed each to be alone in a separate nest: {2}. If it is not the intention, check the assignment of alternatives to nests.
Definition of the model. This is the contribution of each observation to the log likelihood function. The choice model is a nested logit, with availability conditions.
log_probability = lognested(v, av, nests, CHOICE)
Create the Biogeme object.
the_biogeme = BIOGEME(
database, log_probability, optimization_algorithm='simple_bounds_BFGS'
)
the_biogeme.modelName = "b09nested"
Biogeme parameters read from biogeme.toml.
/Users/bierlair/MyFiles/github/biogeme/docs/source/examples/swissmetro/plot_b09nested.py:85: DeprecationWarning: 'modelName' is deprecated. Please use 'model_name' instead.
the_biogeme.modelName = "b09nested"
Calculate the null log likelihood for reporting.
the_biogeme.calculate_null_loglikelihood(av)
-6964.662979192191
Estimate the parameters
results = the_biogeme.estimate()
*** Initial values of the parameters are obtained from the file __b09nested.iter
Parameter values restored from __b09nested.iter
Starting values for the algorithm: {'asc_train': -0.5119573878979035, 'b_time': -0.8987202255038353, 'b_cost': -0.8566967912527499, 'nest_parameter': 2.053866579484938, 'asc_car': -0.16713665097004932}
Optimization algorithm: BFGS with simple bounds [simple_bounds_BFGS].
Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds]
** Optimization: BFGS with trust region for simple bounds
Optimization algorithm has converged.
Relative gradient: 5.681064121356373e-06
Cause of termination: Relative gradient = 5.7e-06 <= 6.1e-06
Number of function evaluations: 1
Number of gradient evaluations: 1
Number of hessian evaluations: 0
Algorithm: BFGS with trust region for simple bound constraints
Number of iterations: 0
Optimization time: 0:00:00.398498
Calculate second derivatives and BHHH
File b09nested~01.html has been generated.
File b09nested~01.yaml has been generated.
print(results.short_summary())
Results for model b09nested
Nbr of parameters: 5
Sample size: 6768
Excluded data: 3960
Null log likelihood: -6964.663
Final log likelihood: -5236.9
Likelihood ratio test (null): 3455.526
Rho square (null): 0.248
Rho bar square (null): 0.247
Akaike Information Criterion: 10483.8
Bayesian Information Criterion: 10517.9
pandas_results = get_pandas_estimated_parameters(estimation_results=results)
display(pandas_results)
Name Value Robust std err. Robust t-stat. Robust p-value
0 asc_train -0.511957 0.079115 -6.471071 9.731105e-11
1 b_time -0.898720 0.107109 -8.390695 0.000000e+00
2 b_cost -0.856697 0.060033 -14.270350 0.000000e+00
3 nest_parameter 2.053867 0.164162 12.511219 0.000000e+00
4 asc_car -0.167137 0.054529 -3.065110 2.175902e-03
We calculate the correlation between the error terms of the alternatives.
corr = nests.correlation(
parameters=results.get_beta_values(),
alternatives_names={1: 'Train', 2: 'Swissmetro', 3: 'Car'},
)
print(corr)
Train Swissmetro Car
Train 1.000000 0.0 0.762941
Swissmetro 0.000000 1.0 0.000000
Car 0.762941 0.0 1.000000
Total running time of the script: (0 minutes 2.002 seconds)