Source code for biogeme.loglikelihood

""" Functions to calculate the log likelihood

:author: Michel Bierlaire
:date: Fri Mar 29 17:11:44 2019

"""

# Too constraining
# pylint: disable=invalid-name,

from biogeme.expressions import Expression, exp, log, MonteCarlo


[docs] def loglikelihood(prob: Expression) -> Expression: """ Simply computes the log of the probability :param prob: An expression providing the value of the probability. :return: the logarithm of the probability. """ return log(prob)
[docs] def mixedloglikelihood(prob: Expression) -> Expression: """Compute a simulated loglikelihood function :param prob: An expression providing the value of the probability. Although it is not formally necessary, the expression should contain one or more random variables of a given distribution, and therefore is defined as .. math:: P(i|\\xi_1,\\ldots,\\xi_L) :return: the simulated loglikelihood, given by .. math:: \\ln\\left(\\sum_{r=1}^R P(i|\\xi^r_1,\\ldots,\\xi^r_L) \\right) where :math:`R` is the number of draws, and :math:`\\xi_j^r` is the rth draw of the random variable :math:`\\xi_j`. """ ell = MonteCarlo(prob) return log(ell)
[docs] def likelihoodregression( meas: Expression, model: Expression, sigma: Expression ) -> Expression: """Computes likelihood function of a regression model. :param meas: An expression providing the value :math:`y` of the measure for the current observation. :param model: An expression providing the output :math:`m` of the model for the current observation. :param sigma: An expression (typically, a parameter) providing the standard error :math:`\\sigma` of the error term. :type sigma: biogeme.expressions.Expression :return: The likelihood of the regression, assuming a normal distribution, that is .. math:: \\frac{1}{\\sigma} \\phi\\left( \\frac{y-m}{\\sigma} \\right) where :math:`\\phi(\\cdot)` is the pdf of the normal distribution. """ return exp(loglikelihoodregression(meas, model, sigma))
[docs] def loglikelihoodregression( meas: Expression, model: Expression, sigma: Expression ) -> Expression: """Computes log likelihood function of a regression model. :param meas: An expression providing the value :math:`y` of the measure for the current observation. :param model: An expression providing the output :math:`m` of the model for the current observation. :param sigma: An expression (typically, a parameter) providing the standard error :math:`\\sigma` of the error term. :return: the likelihood of the regression, assuming a normal distribution, that is .. math:: -\\left( \\frac{(y-m)^2}{2\\sigma^2} \\right) - \\frac{1}{2}\\log(\\sigma^2) - \\frac{1}{2}\\log(2\\pi) """ t = (meas - model) / sigma f = -(t**2) / 2 - log(sigma**2) / 2 - 0.9189385332 return f