.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/timing/plot02_cnl.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_timing_plot02_cnl.py: Timing of a cross-nested logit model ==================================== Michel Bierlaire Tue Jul 2 14:49:25 2024 .. GENERATED FROM PYTHON SOURCE LINES 9-12 .. code-block:: Python from tabulate import tabulate .. GENERATED FROM PYTHON SOURCE LINES 13-14 See the data processing script: :ref:`swissmetro_data`. .. GENERATED FROM PYTHON SOURCE LINES 14-32 .. code-block:: Python from biogeme.data.swissmetro import ( CAR_AV_SP, CAR_CO_SCALED, CAR_TT_SCALED, CHOICE, SM_AV, SM_COST_SCALED, SM_TT_SCALED, TRAIN_AV_SP, TRAIN_COST_SCALED, TRAIN_TT_SCALED, read_data, ) from biogeme.expressions import Beta, Expression from biogeme.models import logcnl from biogeme.nests import NestsForCrossNestedLogit, OneNestForCrossNestedLogit from timing_expression import timing_expression .. GENERATED FROM PYTHON SOURCE LINES 33-34 Parameters to be estimated. .. GENERATED FROM PYTHON SOURCE LINES 34-40 .. code-block:: Python ASC_CAR = Beta('ASC_CAR', 0, None, None, 0) ASC_TRAIN = Beta('ASC_TRAIN', 0, None, None, 0) ASC_SM = Beta('ASC_SM', 0, None, None, 1) B_TIME = Beta('B_TIME', 0, None, None, 0) B_COST = Beta('B_COST', 0, None, None, 0) .. GENERATED FROM PYTHON SOURCE LINES 41-44 .. code-block:: Python MU_EXISTING = Beta('MU_EXISTING', 1.1, 1, 10, 0) MU_PUBLIC = Beta('MU_PUBLIC', 1.1, 1, 10, 0) .. GENERATED FROM PYTHON SOURCE LINES 45-46 Nest membership parameters. .. GENERATED FROM PYTHON SOURCE LINES 46-49 .. code-block:: Python ALPHA_EXISTING = Beta('ALPHA_EXISTING', 0.5, 0, 1, 0) ALPHA_PUBLIC = 1 - ALPHA_EXISTING .. GENERATED FROM PYTHON SOURCE LINES 50-51 Definition of the utility functions. .. GENERATED FROM PYTHON SOURCE LINES 51-55 .. code-block:: Python V1 = ASC_TRAIN + B_TIME * TRAIN_TT_SCALED + B_COST * TRAIN_COST_SCALED V2 = ASC_SM + B_TIME * SM_TT_SCALED + B_COST * SM_COST_SCALED V3 = ASC_CAR + B_TIME * CAR_TT_SCALED + B_COST * CAR_CO_SCALED .. GENERATED FROM PYTHON SOURCE LINES 56-57 Associate utility functions with the numbering of alternatives. .. GENERATED FROM PYTHON SOURCE LINES 57-59 .. code-block:: Python V = {1: V1, 2: V2, 3: V3} .. GENERATED FROM PYTHON SOURCE LINES 60-61 Associate the availability conditions with the alternatives. .. GENERATED FROM PYTHON SOURCE LINES 61-63 .. code-block:: Python av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP} .. GENERATED FROM PYTHON SOURCE LINES 64-65 Definition of nests. .. GENERATED FROM PYTHON SOURCE LINES 65-80 .. code-block:: Python nest_existing = OneNestForCrossNestedLogit( nest_param=MU_EXISTING, dict_of_alpha={1: ALPHA_EXISTING, 2: 0.0, 3: 1.0}, name='existing', ) nest_public = OneNestForCrossNestedLogit( nest_param=MU_PUBLIC, dict_of_alpha={1: ALPHA_PUBLIC, 2: 1.0, 3: 0.0}, name='public' ) nests = NestsForCrossNestedLogit( choice_set=[1, 2, 3], tuple_of_nests=(nest_existing, nest_public) ) .. GENERATED FROM PYTHON SOURCE LINES 81-83 Definition of the model. This is the contribution of each observation to the log likelihood function. .. GENERATED FROM PYTHON SOURCE LINES 83-85 .. code-block:: Python log_probability: Expression = logcnl(V, av, nests, CHOICE) .. GENERATED FROM PYTHON SOURCE LINES 86-88 .. code-block:: Python database = read_data() .. GENERATED FROM PYTHON SOURCE LINES 89-90 Timing .. GENERATED FROM PYTHON SOURCE LINES 90-95 .. code-block:: Python timing_results = timing_expression( the_expression=log_probability, the_database=database ) results = [[k, f'{v:.3g}'] for k, v in timing_results.items()] print(tabulate(results, headers=['', 'Time (in sec.)'], tablefmt='github')) .. _sphx_glr_download_auto_examples_timing_plot02_cnl.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot02_cnl.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot02_cnl.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot02_cnl.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_