.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/hybrid_choice/plot_b04_choice_only_bayes.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_hybrid_choice_plot_b04_choice_only_bayes.py: 4. Choice model only - Bayesian estimation ========================================== This script estimates a **standard discrete choice model** without any latent variables using **Bayesian estimation** in Biogeme. It serves as the Bayesian counterpart of the choice-only maximum likelihood specification and provides a baseline for comparison with: - the Bayesian hybrid choice model, and - the corresponding maximum likelihood estimates. The configuration is defined locally in this file and passed to the generic estimation pipeline via :func:`estimate_model`. Michel Bierlaire Thu Dec 25 2025, 08:27:04 .. GENERATED FROM PYTHON SOURCE LINES 20-38 .. rst-class:: sphx-glr-script-out .. code-block:: none Biogeme parameters read from biogeme.toml. Loaded NetCDF file size: 1.1 GB load finished in 5868 ms (5.87 s) Results are read from the file saved_results/b04_choice_only_bayes.nc. posterior_predictive_loglike finished in 342 ms expected_log_likelihood finished in 15 ms best_draw_log_likelihood finished in 15 ms /Users/bierlair/python_envs/venv313/lib/python3.13/site-packages/arviz/stats/stats.py:1667: UserWarning: For one or more samples the posterior variance of the log predictive densities exceeds 0.4. This could be indication of WAIC starting to fail. See http://arxiv.org/abs/1507.04544 for details warnings.warn( waic_res finished in 894 ms waic finished in 894 ms loo_res finished in 10878 ms (10.88 s) loo finished in 10878 ms (10.88 s) Sample size 896 Sampler NUTS Number of chains 4 Number of draws per chain 20000 Total number of draws 80000 Acceptance rate target 0.9 Run time 0:01:48.594689 Posterior predictive log-likelihood (sum of log mean p) -509.25 Expected log-likelihood E[log L(Y|θ)] -516.04 Best-draw log-likelihood (posterior upper bound) -512.56 WAIC (Widely Applicable Information Criterion) -523.52 WAIC Standard Error 27.35 Effective number of parameters (p_WAIC) 14.26 LOO (Leave-One-Out Cross-Validation) -523.57 LOO Standard Error 27.37 Effective number of parameters (p_LOO) 14.32 Diagnostics computation took 33.7 seconds (cached). Name Value (mean) ... ESS (bulk) ESS (tail) 0 choice_asc_pt -0.680088 ... 29694.589536 40554.824942 1 choice_asc_car -0.264857 ... 27725.976971 38426.823096 2 choice_beta_time_pt_ref -0.965795 ... 33348.740556 36408.843240 3 choice_beta_cost -0.080881 ... 47738.336216 42031.206892 4 choice_beta_time_car_ref -2.053416 ... 34740.385276 38711.164989 5 choice_beta_dist_work -0.209783 ... 32861.169315 43327.888783 6 choice_beta_dist_other_purposes -0.332450 ... 33112.393040 43404.599078 [7 rows x 12 columns] | .. code-block:: Python import biogeme.biogeme_logging as blog from config import Config from estimate import estimate_model logger = blog.get_screen_logger(level=blog.INFO) the_config = Config( name='b04_choice_only_bayes', latent_variables="zero", choice_model="yes", estimation="bayes", number_of_bayesian_draws_per_chain=20_000, number_of_monte_carlo_draws=20_000, ) estimate_model(config=the_config) .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 53.505 seconds) .. _sphx_glr_download_auto_examples_hybrid_choice_plot_b04_choice_only_bayes.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_b04_choice_only_bayes.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_b04_choice_only_bayes.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_b04_choice_only_bayes.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_