.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/bayesian_swissmetro/plot_b04_validation.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_bayesian_swissmetro_plot_b04_validation.py: 4. Out-of-sample validation =========================== Example of the out-of-sample validation of a logit model in a Bayesian estimation context. Michel Bierlaire, EPFL Thu Oct 30 2025, 16:40:12 .. GENERATED FROM PYTHON SOURCE LINES 11-18 .. code-block:: Python from biogeme.bayesian_estimation import BayesianResults from biogeme.biogeme import BIOGEME from biogeme.expressions import Beta from biogeme.models import loglogit from biogeme.validation import ValidationResult .. GENERATED FROM PYTHON SOURCE LINES 19-20 See the data processing script: :ref:`swissmetro_data`. .. GENERATED FROM PYTHON SOURCE LINES 20-34 .. code-block:: Python from swissmetro_data import ( CAR_AV_SP, CAR_CO_SCALED, CAR_TT_SCALED, CHOICE, SM_AV, SM_COST_SCALED, SM_TT_SCALED, TRAIN_AV_SP, TRAIN_COST_SCALED, TRAIN_TT_SCALED, database, ) .. GENERATED FROM PYTHON SOURCE LINES 35-36 Parameters to be estimated. .. GENERATED FROM PYTHON SOURCE LINES 36-42 .. code-block:: Python asc_car = Beta('asc_car', 0, None, None, 0) asc_train = Beta('asc_train', 0, None, None, 0) asc_sm = Beta('asc_sm', 0, None, None, 1) b_time = Beta('b_time', 0, None, None, 0) b_cost = Beta('b_cost', 0, None, None, 0) .. GENERATED FROM PYTHON SOURCE LINES 43-44 Definition of the utility functions. .. GENERATED FROM PYTHON SOURCE LINES 44-48 .. code-block:: Python v_train = asc_train + b_time * TRAIN_TT_SCALED + b_cost * TRAIN_COST_SCALED v_swissmetro = asc_sm + b_time * SM_TT_SCALED + b_cost * SM_COST_SCALED v_car = asc_car + b_time * CAR_TT_SCALED + b_cost * CAR_CO_SCALED .. GENERATED FROM PYTHON SOURCE LINES 49-50 Associate utility functions with the numbering of alternatives. .. GENERATED FROM PYTHON SOURCE LINES 50-52 .. code-block:: Python v = {1: v_train, 2: v_swissmetro, 3: v_car} .. GENERATED FROM PYTHON SOURCE LINES 53-54 Associate the availability conditions with the alternatives. .. GENERATED FROM PYTHON SOURCE LINES 54-56 .. code-block:: Python av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP} .. GENERATED FROM PYTHON SOURCE LINES 57-59 Definition of the model. This is the contribution of each observation to the log likelihood function. .. GENERATED FROM PYTHON SOURCE LINES 59-61 .. code-block:: Python logprob = loglogit(v, av, CHOICE) .. GENERATED FROM PYTHON SOURCE LINES 62-63 Create the Biogeme object. .. GENERATED FROM PYTHON SOURCE LINES 63-66 .. code-block:: Python the_biogeme = BIOGEME(database, logprob) the_biogeme.model_name = 'b04validation' .. GENERATED FROM PYTHON SOURCE LINES 67-68 Estimate the parameters. .. GENERATED FROM PYTHON SOURCE LINES 68-75 .. code-block:: Python try: results = BayesianResults.from_netcdf( filename=f'saved_results/{the_biogeme.model_name}.nc' ) except FileNotFoundError: results = the_biogeme.bayesian_estimation() .. rst-class:: sphx-glr-script-out .. code-block:: none load finished in 4385 ms (4.39 s) .. GENERATED FROM PYTHON SOURCE LINES 76-84 The validation consists in organizing the data into several slices of about the same size, randomly defined. Each slice is considered as a validation dataset. The model is then re-estimated using all the data except the slice, and the estimated model is applied on the validation set (i.e. the slice). The value of the log likelihood for each observation in the validation set is reported in a dataframe. As this is done for each slice, the output is a list of dataframes, each corresponding to one of these exercises. .. GENERATED FROM PYTHON SOURCE LINES 84-91 .. code-block:: Python validation_results: list[ValidationResult] = the_biogeme.validate(results, slices=5) for slide in validation_results: print( f'Log likelihood for {slide.simulated_values.shape[0]} validation data: ' f'{slide.simulated_values.iloc[:, 0].sum()}' ) .. rst-class:: sphx-glr-script-out .. code-block:: none Log likelihood for 1354 validation data: -1045.4505746905775 Log likelihood for 1354 validation data: -1071.522163749923 Log likelihood for 1354 validation data: -1073.554194770125 Log likelihood for 1353 validation data: -1053.902652288213 Log likelihood for 1353 validation data: -1097.3034038689275 .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 30.493 seconds) .. _sphx_glr_download_auto_examples_bayesian_swissmetro_plot_b04_validation.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_b04_validation.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_b04_validation.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_b04_validation.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_