.. _sphx_glr_auto_examples_bayesian_swissmetro:
Biogeme examples for Bayesian inference with the Swissmetro data
****************************************************************
You find here several examples of models that illustrate how to specify models to be estimated with Biogeme using
Bayesian inference. To the extent possible, we have used the same examples illustrating the maximum
likelihood estimation. The names of the files should correspond too.
.. raw:: html
.. thumbnail-parent-div-open
.. raw:: html
.. only:: html
.. image:: /auto_examples/bayesian_swissmetro/images/thumb/sphx_glr_plot_b01a_logit_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_bayesian_swissmetro_plot_b01a_logit.py`
.. raw:: html
1a. Estimation of a logit model (Bayesian)
.. raw:: html
.. only:: html
.. image:: /auto_examples/bayesian_swissmetro/images/thumb/sphx_glr_plot_b01b_logit_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_bayesian_swissmetro_plot_b01b_logit.py`
.. raw:: html
1b. Estimation of a logit model (Bayesian)
.. raw:: html
.. only:: html
.. image:: /auto_examples/bayesian_swissmetro/images/thumb/sphx_glr_plot_b01c_logit_simul_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_bayesian_swissmetro_plot_b01c_logit_simul.py`
.. raw:: html
1c. Simulation of a logit model (traditional and Bayesian)
.. raw:: html
.. only:: html
.. image:: /auto_examples/bayesian_swissmetro/images/thumb/sphx_glr_plot_b02_weight_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_bayesian_swissmetro_plot_b02_weight.py`
.. raw:: html
2. Logit and sample with weights (Bayesian)
.. raw:: html
.. only:: html
.. image:: /auto_examples/bayesian_swissmetro/images/thumb/sphx_glr_plot_b03_scale_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_bayesian_swissmetro_plot_b03_scale.py`
.. raw:: html
3. Moneymetric and heteroscedastic specification
.. raw:: html
.. only:: html
.. image:: /auto_examples/bayesian_swissmetro/images/thumb/sphx_glr_plot_b04_validation_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_bayesian_swissmetro_plot_b04_validation.py`
.. raw:: html
4. Out-of-sample validation
.. raw:: html
.. only:: html
.. image:: /auto_examples/bayesian_swissmetro/images/thumb/sphx_glr_plot_b05_normal_mixture_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_bayesian_swissmetro_plot_b05_normal_mixture.py`
.. raw:: html
5. Mixture of logit models: normal distribution
.. raw:: html
.. only:: html
.. image:: /auto_examples/bayesian_swissmetro/images/thumb/sphx_glr_plot_b06_unif_mixture_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_bayesian_swissmetro_plot_b06_unif_mixture.py`
.. raw:: html
6. Mixture of logit models: uniform distribution
.. raw:: html
.. only:: html
.. image:: /auto_examples/bayesian_swissmetro/images/thumb/sphx_glr_plot_b07_discrete_mixture_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_bayesian_swissmetro_plot_b07_discrete_mixture.py`
.. raw:: html
7. Latent class model
.. raw:: html
.. only:: html
.. image:: /auto_examples/bayesian_swissmetro/images/thumb/sphx_glr_plot_b08_boxcox_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_bayesian_swissmetro_plot_b08_boxcox.py`
.. raw:: html
8. Box-Cox transforms
.. raw:: html
.. only:: html
.. image:: /auto_examples/bayesian_swissmetro/images/thumb/sphx_glr_plot_b09_nested_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_bayesian_swissmetro_plot_b09_nested.py`
.. raw:: html
9. Nested logit model
.. raw:: html
.. only:: html
.. image:: /auto_examples/bayesian_swissmetro/images/thumb/sphx_glr_plot_b10_nested_bottom_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_bayesian_swissmetro_plot_b10_nested_bottom.py`
.. raw:: html
10. Nested logit model normalized from bottom
.. raw:: html
.. only:: html
.. image:: /auto_examples/bayesian_swissmetro/images/thumb/sphx_glr_plot_b11_cnl_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_bayesian_swissmetro_plot_b11_cnl.py`
.. raw:: html
11. Cross-nested logit
.. raw:: html
.. only:: html
.. image:: /auto_examples/bayesian_swissmetro/images/thumb/sphx_glr_plot_b12_panel_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_bayesian_swissmetro_plot_b12_panel.py`
.. raw:: html
12. Mixture of logit with panel data
.. raw:: html
.. only:: html
.. image:: /auto_examples/bayesian_swissmetro/images/thumb/sphx_glr_plot_b15_panel_discrete_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_bayesian_swissmetro_plot_b15_panel_discrete.py`
.. raw:: html
15. Discrete mixture with panel data
.. raw:: html
.. only:: html
.. image:: /auto_examples/bayesian_swissmetro/images/thumb/sphx_glr_plot_b16_panel_discrete_socio_eco_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_bayesian_swissmetro_plot_b16_panel_discrete_socio_eco.py`
.. raw:: html
16. Latent class model with panel data
.. raw:: html
.. only:: html
.. image:: /auto_examples/bayesian_swissmetro/images/thumb/sphx_glr_plot_b17_lognormal_mixture_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_bayesian_swissmetro_plot_b17_lognormal_mixture.py`
.. raw:: html
17. Mixture with lognormal distribution
.. raw:: html
.. only:: html
.. image:: /auto_examples/bayesian_swissmetro/images/thumb/sphx_glr_plot_b18a_ordinal_logit_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_bayesian_swissmetro_plot_b18a_ordinal_logit.py`
.. raw:: html
18a. Ordinal logit model
.. raw:: html
.. only:: html
.. image:: /auto_examples/bayesian_swissmetro/images/thumb/sphx_glr_plot_b18b_ordinal_probit_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_bayesian_swissmetro_plot_b18b_ordinal_probit.py`
.. raw:: html
18. Ordinal probit model
.. raw:: html
.. only:: html
.. image:: /auto_examples/bayesian_swissmetro/images/thumb/sphx_glr_plot_b19_individual_level_parameters_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_bayesian_swissmetro_plot_b19_individual_level_parameters.py`
.. raw:: html
19. Calculation of individual level parameters
.. raw:: html
.. only:: html
.. image:: /auto_examples/bayesian_swissmetro/images/thumb/sphx_glr_plot_b23a_binary_logit_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_bayesian_swissmetro_plot_b23a_binary_logit.py`
.. raw:: html
23a. Binary logit model
.. raw:: html
.. only:: html
.. image:: /auto_examples/bayesian_swissmetro/images/thumb/sphx_glr_plot_b23b_binary_probit_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_bayesian_swissmetro_plot_b23b_binary_probit.py`
.. raw:: html
23b. Binary probit model
.. raw:: html
.. only:: html
.. image:: /auto_examples/bayesian_swissmetro/images/thumb/sphx_glr_plot_b25_triangular_mixture_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_bayesian_swissmetro_plot_b25_triangular_mixture.py`
.. raw:: html
25. Triangular mixture of logit
.. raw:: html
.. only:: html
.. image:: /auto_examples/bayesian_swissmetro/images/thumb/sphx_glr_plot_b26triangular_panel_mixture_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_bayesian_swissmetro_plot_b26triangular_panel_mixture.py`
.. raw:: html
26. Triangular mixture with panel data
.. raw:: html
.. only:: html
.. image:: /auto_examples/bayesian_swissmetro/images/thumb/sphx_glr_swissmetro_binary_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_bayesian_swissmetro_swissmetro_binary.py`
.. raw:: html
Data preparation for Swissmetro (binary choice)
.. raw:: html
.. only:: html
.. image:: /auto_examples/bayesian_swissmetro/images/thumb/sphx_glr_swissmetro_data_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_bayesian_swissmetro_swissmetro_data.py`
.. raw:: html
Data preparation for Swissmetro
.. raw:: html
.. only:: html
.. image:: /auto_examples/bayesian_swissmetro/images/thumb/sphx_glr_swissmetro_panel_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_bayesian_swissmetro_swissmetro_panel.py`
.. raw:: html
Panel data preparation for Swissmetro
.. thumbnail-parent-div-close
.. raw:: html
.. toctree::
:hidden:
/auto_examples/bayesian_swissmetro/plot_b01a_logit
/auto_examples/bayesian_swissmetro/plot_b01b_logit
/auto_examples/bayesian_swissmetro/plot_b01c_logit_simul
/auto_examples/bayesian_swissmetro/plot_b02_weight
/auto_examples/bayesian_swissmetro/plot_b03_scale
/auto_examples/bayesian_swissmetro/plot_b04_validation
/auto_examples/bayesian_swissmetro/plot_b05_normal_mixture
/auto_examples/bayesian_swissmetro/plot_b06_unif_mixture
/auto_examples/bayesian_swissmetro/plot_b07_discrete_mixture
/auto_examples/bayesian_swissmetro/plot_b08_boxcox
/auto_examples/bayesian_swissmetro/plot_b09_nested
/auto_examples/bayesian_swissmetro/plot_b10_nested_bottom
/auto_examples/bayesian_swissmetro/plot_b11_cnl
/auto_examples/bayesian_swissmetro/plot_b12_panel
/auto_examples/bayesian_swissmetro/plot_b15_panel_discrete
/auto_examples/bayesian_swissmetro/plot_b16_panel_discrete_socio_eco
/auto_examples/bayesian_swissmetro/plot_b17_lognormal_mixture
/auto_examples/bayesian_swissmetro/plot_b18a_ordinal_logit
/auto_examples/bayesian_swissmetro/plot_b18b_ordinal_probit
/auto_examples/bayesian_swissmetro/plot_b19_individual_level_parameters
/auto_examples/bayesian_swissmetro/plot_b23a_binary_logit
/auto_examples/bayesian_swissmetro/plot_b23b_binary_probit
/auto_examples/bayesian_swissmetro/plot_b25_triangular_mixture
/auto_examples/bayesian_swissmetro/plot_b26triangular_panel_mixture
/auto_examples/bayesian_swissmetro/swissmetro_binary
/auto_examples/bayesian_swissmetro/swissmetro_data
/auto_examples/bayesian_swissmetro/swissmetro_panel