.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/swissmetro/plot_b11cnl.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_swissmetro_plot_b11cnl.py: Cross-nested logit ================== Example of a cross-nested logit model with two nests: - one with existing alternatives (car and train), - one with public transportation alternatives (train and Swissmetro) :author: Michel Bierlaire, EPFL :date: Sun Apr 9 18:06:44 2023 .. GENERATED FROM PYTHON SOURCE LINES 15-22 .. code-block:: Python import biogeme.biogeme_logging as blog import biogeme.biogeme as bio from biogeme import models from biogeme.expressions import Beta from biogeme.nests import OneNestForCrossNestedLogit, NestsForCrossNestedLogit .. GENERATED FROM PYTHON SOURCE LINES 23-24 See the data processing script: :ref:`swissmetro_data`. .. GENERATED FROM PYTHON SOURCE LINES 24-41 .. code-block:: Python from swissmetro_data import ( database, CHOICE, SM_AV, CAR_AV_SP, TRAIN_AV_SP, TRAIN_TT_SCALED, TRAIN_COST_SCALED, SM_TT_SCALED, SM_COST_SCALED, CAR_TT_SCALED, CAR_CO_SCALED, ) logger = blog.get_screen_logger(level=blog.INFO) logger.info('Example b11cnl.py') .. rst-class:: sphx-glr-script-out .. code-block:: none Example b11cnl.py .. GENERATED FROM PYTHON SOURCE LINES 42-43 Parameters to be estimated. .. GENERATED FROM PYTHON SOURCE LINES 43-49 .. code-block:: Python ASC_CAR = Beta('ASC_CAR', 0, None, None, 0) ASC_TRAIN = Beta('ASC_TRAIN', 0, None, None, 0) ASC_SM = Beta('ASC_SM', 0, None, None, 1) B_TIME = Beta('B_TIME', 0, None, None, 0) B_COST = Beta('B_COST', 0, None, None, 0) .. GENERATED FROM PYTHON SOURCE LINES 50-53 .. code-block:: Python MU_EXISTING = Beta('MU_EXISTING', 1, 1, 5, 0) MU_PUBLIC = Beta('MU_PUBLIC', 1, 1, 5, 0) .. GENERATED FROM PYTHON SOURCE LINES 54-55 Nest membership parameters. .. GENERATED FROM PYTHON SOURCE LINES 55-58 .. code-block:: Python ALPHA_EXISTING = Beta('ALPHA_EXISTING', 0.5, 0, 1, 0) ALPHA_PUBLIC = 1 - ALPHA_EXISTING .. GENERATED FROM PYTHON SOURCE LINES 59-60 Definition of the utility functions .. GENERATED FROM PYTHON SOURCE LINES 60-64 .. code-block:: Python V1 = ASC_TRAIN + B_TIME * TRAIN_TT_SCALED + B_COST * TRAIN_COST_SCALED V2 = ASC_SM + B_TIME * SM_TT_SCALED + B_COST * SM_COST_SCALED V3 = ASC_CAR + B_TIME * CAR_TT_SCALED + B_COST * CAR_CO_SCALED .. GENERATED FROM PYTHON SOURCE LINES 65-66 Associate utility functions with the numbering of alternatives .. GENERATED FROM PYTHON SOURCE LINES 66-68 .. code-block:: Python V = {1: V1, 2: V2, 3: V3} .. GENERATED FROM PYTHON SOURCE LINES 69-70 Associate the availability conditions with the alternatives .. GENERATED FROM PYTHON SOURCE LINES 70-72 .. code-block:: Python av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP} .. GENERATED FROM PYTHON SOURCE LINES 73-74 Definition of nests. .. GENERATED FROM PYTHON SOURCE LINES 74-89 .. code-block:: Python nest_existing = OneNestForCrossNestedLogit( nest_param=MU_EXISTING, dict_of_alpha={1: ALPHA_EXISTING, 2: 0.0, 3: 1.0}, name='existing', ) nest_public = OneNestForCrossNestedLogit( nest_param=MU_PUBLIC, dict_of_alpha={1: ALPHA_PUBLIC, 2: 1.0, 3: 0.0}, name='public' ) nests = NestsForCrossNestedLogit( choice_set=[1, 2, 3], tuple_of_nests=(nest_existing, nest_public) ) .. GENERATED FROM PYTHON SOURCE LINES 90-91 The choice model is a cross-nested logit, with availability conditions. .. GENERATED FROM PYTHON SOURCE LINES 91-93 .. code-block:: Python logprob = models.logcnl(V, av, nests, CHOICE) .. GENERATED FROM PYTHON SOURCE LINES 94-95 Create the Biogeme object .. GENERATED FROM PYTHON SOURCE LINES 95-98 .. code-block:: Python the_biogeme = bio.BIOGEME(database, logprob) the_biogeme.modelName = 'b11cnl' .. rst-class:: sphx-glr-script-out .. code-block:: none Biogeme parameters read from biogeme.toml. .. GENERATED FROM PYTHON SOURCE LINES 99-100 Estimate the parameters. .. GENERATED FROM PYTHON SOURCE LINES 100-102 .. code-block:: Python results = the_biogeme.estimate() .. rst-class:: sphx-glr-script-out .. code-block:: none As the model is not too complex, we activate the calculation of second derivatives. If you want to change it, change the name of the algorithm in the TOML file from "automatic" to "simple_bounds" *** Initial values of the parameters are obtained from the file __b11cnl.iter Cannot read file __b11cnl.iter. Statement is ignored. As the model is not too complex, we activate the calculation of second derivatives. If you want to change it, change the name of the algorithm in the TOML file from "automatic" to "simple_bounds" Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds] ** Optimization: Newton with trust region for simple bounds Iter. ALPHA_EXISTING ASC_CAR ASC_TRAIN B_COST B_TIME MU_EXISTING MU_PUBLIC Function Relgrad Radius Rho 0 0.57 -0.088 -0.83 -0.27 -1 1.5 1.5 5.6e+03 0.081 1 0.61 + 1 0.86 -0.29 -0.32 -1.3 -0.93 1.8 1.7 5.3e+03 0.049 1 0.63 + 2 0.86 -0.29 -0.32 -1.3 -0.93 1.8 1.7 5.3e+03 0.049 0.5 0.013 - 3 0.79 -0.12 -0.34 -0.77 -0.9 2 1.8 5.2e+03 0.012 0.5 0.79 + 4 0.56 -0.25 -0.1 -0.88 -0.8 2.5 2.2 5.2e+03 0.013 0.5 0.69 + 5 0.55 -0.25 -0.057 -0.86 -0.8 2.5 2.6 5.2e+03 0.0039 5 1.3 ++ 6 0.51 -0.25 0.049 -0.84 -0.79 2.5 3.3 5.2e+03 0.0054 50 1.2 ++ 7 0.5 -0.24 0.077 -0.83 -0.78 2.5 3.7 5.2e+03 0.0017 5e+02 1.2 ++ 8 0.5 -0.24 0.095 -0.82 -0.78 2.5 4 5.2e+03 0.00053 5e+03 1.1 ++ 9 0.5 -0.24 0.095 -0.82 -0.78 2.5 4 5.2e+03 3.3e-05 5e+03 1 ++ Results saved in file b11cnl.html Results saved in file b11cnl.pickle .. GENERATED FROM PYTHON SOURCE LINES 103-105 .. code-block:: Python print(results.short_summary()) .. rst-class:: sphx-glr-script-out .. code-block:: none Results for model b11cnl Nbr of parameters: 7 Sample size: 6768 Excluded data: 3960 Final log likelihood: -5214.049 Akaike Information Criterion: 10442.1 Bayesian Information Criterion: 10489.84 .. GENERATED FROM PYTHON SOURCE LINES 106-108 .. code-block:: Python pandas_results = results.get_estimated_parameters() pandas_results .. raw:: html
Value Rob. Std err Rob. t-test Rob. p-value
ALPHA_EXISTING 0.495086 0.034723 14.258046 0.000000e+00
ASC_CAR -0.240519 0.053433 -4.501346 6.752446e-06
ASC_TRAIN 0.098094 0.069916 1.403026 1.606089e-01
B_COST -0.818963 0.058942 -13.894456 0.000000e+00
B_TIME -0.776852 0.102331 -7.591581 3.153033e-14
MU_EXISTING 2.514925 0.248163 10.134152 0.000000e+00
MU_PUBLIC 4.108825 0.494954 8.301433 0.000000e+00


.. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 1.955 seconds) .. _sphx_glr_download_auto_examples_swissmetro_plot_b11cnl.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_b11cnl.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_b11cnl.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_b11cnl.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_