.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/swissmetro/plot_b09nested_old.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_swissmetro_plot_b09nested_old.py: Nested logit model ================== Example of a nested logit model, using the original syntax for nests. Since biogeme 3.13, a new syntax, more explicit, has been adopted. :author: Michel Bierlaire, EPFL :date: Tue Oct 24 13:37:27 2023 .. GENERATED FROM PYTHON SOURCE LINES 13-19 .. code-block:: Python import biogeme.biogeme_logging as blog import biogeme.biogeme as bio from biogeme import models from biogeme.expressions import Beta .. GENERATED FROM PYTHON SOURCE LINES 20-21 See the data processing script: :ref:`swissmetro_data`. .. GENERATED FROM PYTHON SOURCE LINES 21-38 .. code-block:: Python from swissmetro_data import ( database, CHOICE, SM_AV, CAR_AV_SP, TRAIN_AV_SP, TRAIN_TT_SCALED, TRAIN_COST_SCALED, SM_TT_SCALED, SM_COST_SCALED, CAR_TT_SCALED, CAR_CO_SCALED, ) logger = blog.get_screen_logger(level=blog.INFO) logger.info('Example b09nested') .. rst-class:: sphx-glr-script-out .. code-block:: none Example b09nested .. GENERATED FROM PYTHON SOURCE LINES 39-40 Parameters to be estimated. .. GENERATED FROM PYTHON SOURCE LINES 40-47 .. code-block:: Python ASC_CAR = Beta('ASC_CAR', 0, None, None, 0) ASC_TRAIN = Beta('ASC_TRAIN', 0, None, None, 0) ASC_SM = Beta('ASC_SM', 0, None, None, 1) B_TIME = Beta('B_TIME', 0, None, None, 0) B_COST = Beta('B_COST', 0, None, None, 0) MU = Beta('MU', 1, 1, 10, 0) .. GENERATED FROM PYTHON SOURCE LINES 48-49 Definition of the utility functions. .. GENERATED FROM PYTHON SOURCE LINES 49-53 .. code-block:: Python V1 = ASC_TRAIN + B_TIME * TRAIN_TT_SCALED + B_COST * TRAIN_COST_SCALED V2 = ASC_SM + B_TIME * SM_TT_SCALED + B_COST * SM_COST_SCALED V3 = ASC_CAR + B_TIME * CAR_TT_SCALED + B_COST * CAR_CO_SCALED .. GENERATED FROM PYTHON SOURCE LINES 54-55 Associate utility functions with the numbering of alternatives. .. GENERATED FROM PYTHON SOURCE LINES 55-57 .. code-block:: Python V = {1: V1, 2: V2, 3: V3} .. GENERATED FROM PYTHON SOURCE LINES 58-59 Associate the availability conditions with the alternatives. .. GENERATED FROM PYTHON SOURCE LINES 59-61 .. code-block:: Python av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP} .. GENERATED FROM PYTHON SOURCE LINES 62-66 Definition of nests. In this example, we create a nest for the existing modes, that is train (1) and car (3). Each nest is associated with a tuple containing (i) the nest parameter and (ii) the list of alternatives. .. GENERATED FROM PYTHON SOURCE LINES 66-70 .. code-block:: Python existing = MU, [1, 3] future = 1.0, [2] nests = existing, future .. GENERATED FROM PYTHON SOURCE LINES 71-74 Definition of the model. This is the contribution of each observation to the log likelihood function. The choice model is a nested logit, with availability conditions. .. GENERATED FROM PYTHON SOURCE LINES 74-76 .. code-block:: Python logprob = models.lognested(V, av, nests, CHOICE) .. rst-class:: sphx-glr-script-out .. code-block:: none It is recommended to define the nests of the nested logit model using the objects OneNestForNestedLogit and NestsForNestedLogit defined in biogeme.nests. .. GENERATED FROM PYTHON SOURCE LINES 77-78 Create the Biogeme object. .. GENERATED FROM PYTHON SOURCE LINES 78-81 .. code-block:: Python the_biogeme = bio.BIOGEME(database, logprob) the_biogeme.modelName = "b09nested_old" .. rst-class:: sphx-glr-script-out .. code-block:: none Biogeme parameters read from biogeme.toml. .. GENERATED FROM PYTHON SOURCE LINES 82-83 Calculate the null log likelihood for reporting. .. GENERATED FROM PYTHON SOURCE LINES 83-85 .. code-block:: Python the_biogeme.calculate_null_loglikelihood(av) .. rst-class:: sphx-glr-script-out .. code-block:: none np.float64(-6964.662979191462) .. GENERATED FROM PYTHON SOURCE LINES 86-87 Estimate the parameters. .. GENERATED FROM PYTHON SOURCE LINES 87-89 .. code-block:: Python results = the_biogeme.estimate() .. rst-class:: sphx-glr-script-out .. code-block:: none As the model is not too complex, we activate the calculation of second derivatives. If you want to change it, change the name of the algorithm in the TOML file from "automatic" to "simple_bounds" *** Initial values of the parameters are obtained from the file __b09nested_old.iter Cannot read file __b09nested_old.iter. Statement is ignored. As the model is not too complex, we activate the calculation of second derivatives. If you want to change it, change the name of the algorithm in the TOML file from "automatic" to "simple_bounds" Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds] ** Optimization: Newton with trust region for simple bounds Iter. ASC_CAR ASC_TRAIN B_COST B_TIME MU Function Relgrad Radius Rho 0 0.1 -0.75 -1 -0.8 1.5 5.4e+03 0.082 10 0.92 ++ 1 -0.22 -0.28 -0.82 -0.86 2.2 5.3e+03 0.076 10 0.44 + 2 -0.17 -0.52 -0.7 -0.7 2.7 5.3e+03 0.023 10 0.72 + 3 -0.17 -0.52 -0.7 -0.7 2.7 5.3e+03 0.023 0.84 -4.6 - 4 -0.14 -0.52 -0.87 -0.92 1.8 5.2e+03 0.006 0.84 0.63 + 5 -0.16 -0.51 -0.87 -0.91 2 5.2e+03 0.0014 8.4 1.1 ++ 6 -0.16 -0.51 -0.87 -0.91 2 5.2e+03 8.1e-05 8.4 1 ++ Results saved in file b09nested_old.html Results saved in file b09nested_old.pickle .. GENERATED FROM PYTHON SOURCE LINES 90-92 .. code-block:: Python print(results.short_summary()) .. rst-class:: sphx-glr-script-out .. code-block:: none Results for model b09nested_old Nbr of parameters: 5 Sample size: 6768 Excluded data: 3960 Null log likelihood: -6964.663 Final log likelihood: -5236.9 Likelihood ratio test (null): 3455.525 Rho square (null): 0.248 Rho bar square (null): 0.247 Akaike Information Criterion: 10483.8 Bayesian Information Criterion: 10517.9 .. GENERATED FROM PYTHON SOURCE LINES 93-95 .. code-block:: Python pandas_results = results.get_estimated_parameters() pandas_results .. raw:: html
Value Rob. Std err Rob. t-test Rob. p-value
ASC_CAR -0.166892 0.054518 -3.061193 2.204573e-03
ASC_TRAIN -0.512028 0.079123 -6.471258 9.719070e-11
B_COST -0.857133 0.060002 -14.285004 0.000000e+00
B_TIME -0.899360 0.107040 -8.402065 0.000000e+00
MU 2.051129 0.163477 12.546934 0.000000e+00


.. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.402 seconds) .. _sphx_glr_download_auto_examples_swissmetro_plot_b09nested_old.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_b09nested_old.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_b09nested_old.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_b09nested_old.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_