.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/swissmetro/plot_b06unif_mixture_MHLS.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_swissmetro_plot_b06unif_mixture_MHLS.py: Mixture of logit models ======================= Example of a uniform mixture of logit models, using Monte-Carlo integration. The mixing distribution is uniform. The draws are from the Modified Hypercube Latin Square. :author: Michel Bierlaire, EPFL :date: Sun Apr 9 17:50:28 2023 .. GENERATED FROM PYTHON SOURCE LINES 14-27 .. code-block:: Python import biogeme.biogeme_logging as blog import biogeme.biogeme as bio from biogeme import models from biogeme.expressions import ( Beta, bioDraws, exp, log, MonteCarlo, ) from biogeme.parameters import Parameters .. GENERATED FROM PYTHON SOURCE LINES 28-29 See the data processing script: :ref:`swissmetro_data`. .. GENERATED FROM PYTHON SOURCE LINES 29-46 .. code-block:: Python from swissmetro_data import ( database, CHOICE, SM_AV, CAR_AV_SP, TRAIN_AV_SP, TRAIN_TT_SCALED, TRAIN_COST_SCALED, SM_TT_SCALED, SM_COST_SCALED, CAR_TT_SCALED, CAR_CO_SCALED, ) logger = blog.get_screen_logger(level=blog.INFO) logger.info('Example b06unif_mixture_MHLS') .. rst-class:: sphx-glr-script-out .. code-block:: none Example b06unif_mixture_MHLS .. GENERATED FROM PYTHON SOURCE LINES 47-48 Parameters to be estimated. .. GENERATED FROM PYTHON SOURCE LINES 48-53 .. code-block:: Python ASC_CAR = Beta('ASC_CAR', 0, None, None, 0) ASC_TRAIN = Beta('ASC_TRAIN', 0, None, None, 0) ASC_SM = Beta('ASC_SM', 0, None, None, 1) B_COST = Beta('B_COST', 0, None, None, 0) .. GENERATED FROM PYTHON SOURCE LINES 54-56 Define a random parameter, normally distributed, designed to be used for Monte-Carlo simulation. .. GENERATED FROM PYTHON SOURCE LINES 56-58 .. code-block:: Python B_TIME = Beta('B_TIME', 0, None, None, 0) .. GENERATED FROM PYTHON SOURCE LINES 59-60 It is advised not to use 0 as starting value for the following parameter. .. GENERATED FROM PYTHON SOURCE LINES 60-62 .. code-block:: Python B_TIME_S = Beta('B_TIME_S', 1, None, None, 0) .. GENERATED FROM PYTHON SOURCE LINES 63-65 Define a random parameter, uniformly distributed, designed to be used for Monte-Carlo simulation. The type of draws is set to ``NORMAL_MLHS``. .. GENERATED FROM PYTHON SOURCE LINES 65-67 .. code-block:: Python B_TIME_RND = B_TIME + B_TIME_S * bioDraws('b_time_rnd', 'NORMAL_MLHS') .. GENERATED FROM PYTHON SOURCE LINES 68-69 Definition of the utility functions. .. GENERATED FROM PYTHON SOURCE LINES 69-73 .. code-block:: Python V1 = ASC_TRAIN + B_TIME_RND * TRAIN_TT_SCALED + B_COST * TRAIN_COST_SCALED V2 = ASC_SM + B_TIME_RND * SM_TT_SCALED + B_COST * SM_COST_SCALED V3 = ASC_CAR + B_TIME_RND * CAR_TT_SCALED + B_COST * CAR_CO_SCALED .. GENERATED FROM PYTHON SOURCE LINES 74-75 Associate utility functions with the numbering of alternatives. .. GENERATED FROM PYTHON SOURCE LINES 75-77 .. code-block:: Python V = {1: V1, 2: V2, 3: V3} .. GENERATED FROM PYTHON SOURCE LINES 78-79 Associate the availability conditions with the alternatives. .. GENERATED FROM PYTHON SOURCE LINES 79-81 .. code-block:: Python av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP} .. GENERATED FROM PYTHON SOURCE LINES 82-83 Conditional on b_time_rnd, we have a logit model (called the kernel). .. GENERATED FROM PYTHON SOURCE LINES 83-85 .. code-block:: Python prob = exp(models.loglogit(V, av, CHOICE)) .. GENERATED FROM PYTHON SOURCE LINES 86-87 We integrate over b_time_rnd using Monte-Carlo .. GENERATED FROM PYTHON SOURCE LINES 87-90 .. code-block:: Python logprob = log(MonteCarlo(prob)) .. GENERATED FROM PYTHON SOURCE LINES 91-92 Create the Biogeme object. .. GENERATED FROM PYTHON SOURCE LINES 92-95 .. code-block:: Python the_biogeme = bio.BIOGEME(database, logprob, number_of_draws=100, seed=1223) the_biogeme.modelName = '06unif_mixture_MHLS' .. rst-class:: sphx-glr-script-out .. code-block:: none Biogeme parameters read from biogeme.toml. .. GENERATED FROM PYTHON SOURCE LINES 96-97 Estimate the parameters. .. GENERATED FROM PYTHON SOURCE LINES 97-99 .. code-block:: Python results = the_biogeme.estimate() .. rst-class:: sphx-glr-script-out .. code-block:: none As the model is rather complex, we cancel the calculation of second derivatives. If you want to control the parameters, change the name of the algorithm in the TOML file from "automatic" to "simple_bounds" *** Initial values of the parameters are obtained from the file __06unif_mixture_MHLS.iter Cannot read file __06unif_mixture_MHLS.iter. Statement is ignored. The number of draws (100) is low. The results may not be meaningful. As the model is rather complex, we cancel the calculation of second derivatives. If you want to control the parameters, change the name of the algorithm in the TOML file from "automatic" to "simple_bounds" Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds] ** Optimization: BFGS with trust region for simple bounds Iter. ASC_CAR ASC_TRAIN B_COST B_TIME B_TIME_S Function Relgrad Radius Rho 0 1 -1 -1 -1 2 6.1e+03 0.16 1 0.25 + 1 0 -0.75 -0.34 -2 3 5.5e+03 0.049 1 0.34 + 2 0 -0.75 -0.34 -2 3 5.5e+03 0.049 0.5 -0.039 - 3 0.5 -0.94 -0.84 -2.4 2.6 5.4e+03 0.043 0.5 0.48 + 4 0 -0.44 -1.3 -2.2 2.4 5.3e+03 0.037 0.5 0.45 + 5 0 -0.44 -1.3 -2.2 2.4 5.3e+03 0.037 0.25 -0.035 - 6 0.16 -0.68 -1.4 -2.4 2.2 5.2e+03 0.017 0.25 0.54 + 7 0.084 -0.43 -1.4 -2.5 2.1 5.2e+03 0.0088 0.25 0.73 + 8 0.084 -0.43 -1.4 -2.5 2.1 5.2e+03 0.0088 0.12 -0.66 - 9 0.21 -0.47 -1.4 -2.4 1.9 5.2e+03 0.0088 0.12 0.24 + 10 0.17 -0.34 -1.3 -2.4 1.8 5.2e+03 0.0053 0.12 0.71 + 11 0.17 -0.34 -1.3 -2.4 1.8 5.2e+03 0.0053 0.062 -1.4 - 12 0.17 -0.34 -1.3 -2.4 1.8 5.2e+03 0.0053 0.031 -0.094 - 13 0.2 -0.38 -1.3 -2.4 1.8 5.2e+03 0.0049 0.031 0.2 + 14 0.17 -0.35 -1.3 -2.4 1.8 5.2e+03 0.0025 0.031 0.8 + 15 0.18 -0.37 -1.3 -2.4 1.8 5.2e+03 0.0022 0.031 0.71 + 16 0.15 -0.37 -1.3 -2.3 1.7 5.2e+03 0.0031 0.031 0.76 + 17 0.16 -0.38 -1.3 -2.3 1.7 5.2e+03 0.0016 0.031 0.85 + 18 0.14 -0.39 -1.3 -2.3 1.7 5.2e+03 0.0033 0.031 0.71 + 19 0.15 -0.39 -1.3 -2.3 1.7 5.2e+03 0.0013 0.031 0.84 + 20 0.14 -0.41 -1.3 -2.3 1.6 5.2e+03 0.0026 0.031 0.62 + 21 0.12 -0.4 -1.3 -2.2 1.6 5.2e+03 0.0014 0.031 0.51 + 22 0.12 -0.4 -1.3 -2.2 1.6 5.2e+03 0.0014 0.016 -1.7 - 23 0.14 -0.41 -1.3 -2.2 1.6 5.2e+03 0.001 0.016 0.43 + 24 0.13 -0.41 -1.3 -2.2 1.6 5.2e+03 0.00038 0.16 0.94 ++ 25 0.13 -0.41 -1.3 -2.2 1.6 5.2e+03 0.00038 0.078 -5.2 - 26 0.13 -0.41 -1.3 -2.2 1.6 5.2e+03 0.00038 0.039 -1.5 - 27 0.13 -0.41 -1.3 -2.2 1.6 5.2e+03 0.00038 0.02 -0.19 - 28 0.13 -0.41 -1.3 -2.2 1.6 5.2e+03 0.00079 0.02 0.32 + 29 0.13 -0.41 -1.3 -2.2 1.6 5.2e+03 0.00079 0.0098 -0.57 - 30 0.13 -0.41 -1.3 -2.2 1.6 5.2e+03 0.00079 0.0049 0.024 - 31 0.12 -0.41 -1.3 -2.2 1.6 5.2e+03 0.00035 0.0049 0.77 + 32 0.12 -0.41 -1.3 -2.2 1.6 5.2e+03 0.00027 0.0049 0.49 + 33 0.12 -0.41 -1.3 -2.2 1.6 5.2e+03 0.00031 0.0049 0.31 + 34 0.12 -0.41 -1.3 -2.2 1.6 5.2e+03 0.0001 0.0049 0.59 + Results saved in file 06unif_mixture_MHLS.html Results saved in file 06unif_mixture_MHLS.pickle .. GENERATED FROM PYTHON SOURCE LINES 100-102 .. code-block:: Python print(results.short_summary()) .. rst-class:: sphx-glr-script-out .. code-block:: none Results for model 06unif_mixture_MHLS Nbr of parameters: 5 Sample size: 6768 Excluded data: 3960 Final log likelihood: -5222.242 Akaike Information Criterion: 10454.48 Bayesian Information Criterion: 10488.58 .. GENERATED FROM PYTHON SOURCE LINES 103-105 .. code-block:: Python pandas_results = results.get_estimated_parameters() pandas_results .. raw:: html
Value Rob. Std err Rob. t-test Rob. p-value
ASC_CAR 0.120649 0.051279 2.352793 1.863298e-02
ASC_TRAIN -0.416681 0.066089 -6.304893 2.883922e-10
B_COST -1.268828 0.085060 -14.916773 0.000000e+00
B_TIME -2.192215 0.115352 -19.004517 0.000000e+00
B_TIME_S 1.573228 0.135056 11.648741 0.000000e+00


.. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 14.186 seconds) .. _sphx_glr_download_auto_examples_swissmetro_plot_b06unif_mixture_MHLS.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_b06unif_mixture_MHLS.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_b06unif_mixture_MHLS.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_b06unif_mixture_MHLS.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_