.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/swissmetro/plot_b05normal_mixture.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_swissmetro_plot_b05normal_mixture.py: .. _plot_b05normal_mixture: Mixture of logit models ======================= Example of a normal mixture of logit models, using Monte-Carlo integration. :author: Michel Bierlaire, EPFL :date: Sun Apr 9 17:30:14 2023 .. GENERATED FROM PYTHON SOURCE LINES 12-19 .. code-block:: Python import biogeme.biogeme_logging as blog import biogeme.biogeme as bio from biogeme import models from biogeme.expressions import Beta, bioDraws, log, MonteCarlo from biogeme.parameters import Parameters .. GENERATED FROM PYTHON SOURCE LINES 20-21 See the data processing script: :ref:`swissmetro_data`. .. GENERATED FROM PYTHON SOURCE LINES 21-38 .. code-block:: Python from swissmetro_data import ( database, CHOICE, SM_AV, CAR_AV_SP, TRAIN_AV_SP, TRAIN_TT_SCALED, TRAIN_COST_SCALED, SM_TT_SCALED, SM_COST_SCALED, CAR_TT_SCALED, CAR_CO_SCALED, ) logger = blog.get_screen_logger(level=blog.INFO) logger.info('Example b05normal_mixtures.py') .. rst-class:: sphx-glr-script-out .. code-block:: none Example b05normal_mixtures.py .. GENERATED FROM PYTHON SOURCE LINES 39-40 Parameters to be estimated .. GENERATED FROM PYTHON SOURCE LINES 40-45 .. code-block:: Python ASC_CAR = Beta('ASC_CAR', 0, None, None, 0) ASC_TRAIN = Beta('ASC_TRAIN', 0, None, None, 0) ASC_SM = Beta('ASC_SM', 0, None, None, 1) B_COST = Beta('B_COST', 0, None, None, 0) .. GENERATED FROM PYTHON SOURCE LINES 46-48 Define a random parameter, normally distributed, designed to be used for Monte-Carlo simulation. .. GENERATED FROM PYTHON SOURCE LINES 48-50 .. code-block:: Python B_TIME = Beta('B_TIME', 0, None, None, 0) .. GENERATED FROM PYTHON SOURCE LINES 51-52 It is advised *not* to use 0 as starting value for the following parameter. .. GENERATED FROM PYTHON SOURCE LINES 52-55 .. code-block:: Python B_TIME_S = Beta('B_TIME_S', 1, None, None, 0) B_TIME_RND = B_TIME + B_TIME_S * bioDraws('b_time_rnd', 'NORMAL') .. GENERATED FROM PYTHON SOURCE LINES 56-57 Definition of the utility functions. .. GENERATED FROM PYTHON SOURCE LINES 57-61 .. code-block:: Python V1 = ASC_TRAIN + B_TIME_RND * TRAIN_TT_SCALED + B_COST * TRAIN_COST_SCALED V2 = ASC_SM + B_TIME_RND * SM_TT_SCALED + B_COST * SM_COST_SCALED V3 = ASC_CAR + B_TIME_RND * CAR_TT_SCALED + B_COST * CAR_CO_SCALED .. GENERATED FROM PYTHON SOURCE LINES 62-63 Associate utility functions with the numbering of alternatives. .. GENERATED FROM PYTHON SOURCE LINES 63-65 .. code-block:: Python V = {1: V1, 2: V2, 3: V3} .. GENERATED FROM PYTHON SOURCE LINES 66-67 Associate the availability conditions with the alternatives. .. GENERATED FROM PYTHON SOURCE LINES 67-69 .. code-block:: Python av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP} .. GENERATED FROM PYTHON SOURCE LINES 70-71 Conditional to b_time_rnd, we have a logit model (called the kernel). .. GENERATED FROM PYTHON SOURCE LINES 71-73 .. code-block:: Python prob = models.logit(V, av, CHOICE) .. GENERATED FROM PYTHON SOURCE LINES 74-75 We integrate over b_time_rnd using Monte-Carlo. .. GENERATED FROM PYTHON SOURCE LINES 75-77 .. code-block:: Python logprob = log(MonteCarlo(prob)) .. GENERATED FROM PYTHON SOURCE LINES 78-79 These notes will be included as such in the report file. .. GENERATED FROM PYTHON SOURCE LINES 79-84 .. code-block:: Python USER_NOTES = ( 'Example of a mixture of logit models with three alternatives, ' 'approximated using Monte-Carlo integration.' ) .. GENERATED FROM PYTHON SOURCE LINES 85-86 Create the Biogeme object. .. GENERATED FROM PYTHON SOURCE LINES 86-91 .. code-block:: Python the_biogeme = bio.BIOGEME( database, logprob, user_notes=USER_NOTES, number_of_draws=100, seed=1223 ) the_biogeme.modelName = 'b05normal_mixture' .. rst-class:: sphx-glr-script-out .. code-block:: none Biogeme parameters read from biogeme.toml. .. GENERATED FROM PYTHON SOURCE LINES 92-94 .. code-block:: Python print(f'Number of draws: {the_biogeme.number_of_draws}') .. rst-class:: sphx-glr-script-out .. code-block:: none Number of draws: 100 .. GENERATED FROM PYTHON SOURCE LINES 95-96 Estimate the parameters .. GENERATED FROM PYTHON SOURCE LINES 96-97 .. code-block:: Python results = the_biogeme.estimate() .. rst-class:: sphx-glr-script-out .. code-block:: none As the model is rather complex, we cancel the calculation of second derivatives. If you want to control the parameters, change the name of the algorithm in the TOML file from "automatic" to "simple_bounds" *** Initial values of the parameters are obtained from the file __b05normal_mixture.iter Cannot read file __b05normal_mixture.iter. Statement is ignored. The number of draws (100) is low. The results may not be meaningful. As the model is rather complex, we cancel the calculation of second derivatives. If you want to control the parameters, change the name of the algorithm in the TOML file from "automatic" to "simple_bounds" Optimization algorithm: hybrid Newton/BFGS with simple bounds [simple_bounds] ** Optimization: BFGS with trust region for simple bounds Iter. ASC_CAR ASC_TRAIN B_COST B_TIME B_TIME_S Function Relgrad Radius Rho 0 1 -1 -1 -1 2 6.1e+03 0.16 1 0.25 + 1 0 -0.75 -0.35 -2 3 5.5e+03 0.049 1 0.35 + 2 0 -0.75 -0.35 -2 3 5.5e+03 0.049 0.5 -0.051 - 3 0.5 -0.94 -0.85 -2.4 2.6 5.4e+03 0.044 0.5 0.48 + 4 0 -0.44 -1.3 -2.9 2.1 5.3e+03 0.073 0.5 0.34 + 5 0 -0.44 -1.3 -2.9 2.1 5.3e+03 0.073 0.25 -0.6 - 6 0.25 -0.19 -1.6 -2.7 2.3 5.2e+03 0.025 0.25 0.26 + 7 0.25 -0.19 -1.6 -2.7 2.3 5.2e+03 0.025 0.12 0.099 - 8 0.24 -0.32 -1.5 -2.8 2.2 5.2e+03 0.011 1.2 0.92 ++ 9 0.24 -0.32 -1.5 -2.8 2.2 5.2e+03 0.011 0.62 -4.4 - 10 0.24 -0.32 -1.5 -2.8 2.2 5.2e+03 0.011 0.31 -1.4 - 11 0.24 -0.32 -1.5 -2.8 2.2 5.2e+03 0.011 0.16 -0.34 - 12 0.27 -0.2 -1.3 -2.6 2.1 5.2e+03 0.0082 0.16 0.41 + 13 0.27 -0.2 -1.3 -2.6 2.1 5.2e+03 0.0082 0.078 0.09 - 14 0.25 -0.28 -1.3 -2.7 2 5.2e+03 0.019 0.078 0.2 + 15 0.26 -0.25 -1.3 -2.6 2 5.2e+03 0.0033 0.78 0.93 ++ 16 0.26 -0.25 -1.3 -2.6 2 5.2e+03 0.0033 0.39 -0.98 - 17 0.26 -0.25 -1.3 -2.6 2 5.2e+03 0.0033 0.2 -0.058 - 18 0.17 -0.45 -1.3 -2.5 1.9 5.2e+03 0.0093 0.2 0.38 + 19 0.17 -0.45 -1.3 -2.5 1.9 5.2e+03 0.0093 0.098 -0.19 - 20 0.17 -0.45 -1.3 -2.5 1.9 5.2e+03 0.0093 0.049 -1.1 - 21 0.12 -0.4 -1.3 -2.4 1.9 5.2e+03 0.0061 0.049 0.2 + 22 0.17 -0.42 -1.3 -2.4 1.9 5.2e+03 0.003 0.049 0.76 + 23 0.15 -0.37 -1.3 -2.4 1.8 5.2e+03 0.0033 0.049 0.76 + 24 0.18 -0.38 -1.3 -2.4 1.8 5.2e+03 0.0024 0.049 0.59 + 25 0.16 -0.37 -1.3 -2.4 1.7 5.2e+03 0.0019 0.049 0.86 + 26 0.16 -0.38 -1.3 -2.3 1.7 5.2e+03 0.0016 0.049 0.67 + 27 0.16 -0.38 -1.3 -2.3 1.7 5.2e+03 0.0016 0.024 0.099 - 28 0.14 -0.4 -1.3 -2.3 1.7 5.2e+03 0.0028 0.024 0.59 + 29 0.14 -0.4 -1.3 -2.3 1.7 5.2e+03 0.0028 0.012 -0.056 - 30 0.15 -0.39 -1.3 -2.3 1.7 5.2e+03 0.0011 0.012 0.64 + 31 0.14 -0.39 -1.3 -2.3 1.7 5.2e+03 0.0012 0.12 0.98 ++ 32 0.14 -0.39 -1.3 -2.3 1.7 5.2e+03 0.0012 0.061 -0.74 - 33 0.12 -0.4 -1.3 -2.2 1.6 5.2e+03 0.0016 0.061 0.33 + 34 0.12 -0.4 -1.3 -2.2 1.6 5.2e+03 0.0016 0.031 -1.3 - 35 0.12 -0.4 -1.3 -2.2 1.6 5.2e+03 0.0016 0.015 -0.61 - 36 0.13 -0.41 -1.3 -2.2 1.6 5.2e+03 0.00092 0.015 0.42 + 37 0.13 -0.41 -1.3 -2.2 1.6 5.2e+03 0.00067 0.015 0.72 + 38 0.13 -0.41 -1.3 -2.2 1.6 5.2e+03 0.00067 0.0076 -1.4 - 39 0.13 -0.41 -1.3 -2.2 1.6 5.2e+03 0.00067 0.0038 -0.38 - 40 0.12 -0.41 -1.3 -2.2 1.6 5.2e+03 0.00036 0.0038 0.42 + 41 0.13 -0.41 -1.3 -2.2 1.6 5.2e+03 0.00013 0.0038 0.63 + 42 0.13 -0.41 -1.3 -2.2 1.6 5.2e+03 0.00013 0.0019 -0.42 - 43 0.13 -0.41 -1.3 -2.2 1.6 5.2e+03 5.7e-05 0.0019 0.51 - Results saved in file b05normal_mixture.html Results saved in file b05normal_mixture.pickle .. GENERATED FROM PYTHON SOURCE LINES 98-99 .. code-block:: Python print(results.short_summary()) .. rst-class:: sphx-glr-script-out .. code-block:: none Results for model b05normal_mixture Nbr of parameters: 5 Sample size: 6768 Excluded data: 3960 Final log likelihood: -5216.341 Akaike Information Criterion: 10442.68 Bayesian Information Criterion: 10476.78 .. GENERATED FROM PYTHON SOURCE LINES 100-102 .. code-block:: Python pandas_results = results.get_estimated_parameters() pandas_results .. raw:: html
Value Rob. Std err Rob. t-test Rob. p-value
ASC_CAR 0.126124 0.051603 2.444141 1.451974e-02
ASC_TRAIN -0.409875 0.065874 -6.222127 4.904608e-10
B_COST -1.278857 0.085489 -14.959347 0.000000e+00
B_TIME -2.220810 0.115148 -19.286529 0.000000e+00
B_TIME_S 1.602677 0.122264 13.108344 0.000000e+00


.. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 16.532 seconds) .. _sphx_glr_download_auto_examples_swissmetro_plot_b05normal_mixture.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_b05normal_mixture.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_b05normal_mixture.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_b05normal_mixture.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_