.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/montecarlo/plot_b06estimation_integral.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_montecarlo_plot_b06estimation_integral.py: Estimation of mixtures of logit =============================== Estimation of a mixtures of logit models where the integral is calculated using numerical integration. :author: Michel Bierlaire, EPFL :date: Thu Apr 13 21:03:03 2023 .. GENERATED FROM PYTHON SOURCE LINES 12-32 .. code-block:: Python import biogeme.biogeme as bio import biogeme.distributions as dist from biogeme import models from biogeme.expressions import Beta, RandomVariable, Integrate, log from swissmetro import ( database, TRAIN_TT_SCALED, TRAIN_COST_SCALED, SM_TT_SCALED, SM_COST_SCALED, CAR_TT_SCALED, CAR_CO_SCALED, TRAIN_AV_SP, SM_AV, CAR_AV_SP, CHOICE, ) .. GENERATED FROM PYTHON SOURCE LINES 33-40 .. code-block:: Python ASC_CAR = Beta('ASC_CAR', 0, None, None, 0) ASC_TRAIN = Beta('ASC_TRAIN', 0, None, None, 0) ASC_SM = Beta('ASC_SM', 0, None, None, 1) B_TIME = Beta('B_TIME', 0, None, None, 0) B_TIME_S = Beta('B_TIME_S', 1, None, None, 0) B_COST = Beta('B_COST', 0, None, None, 0) .. GENERATED FROM PYTHON SOURCE LINES 41-43 Define a random parameter, normally distirbuted, designed to be used for Monte-Carlo simulation .. GENERATED FROM PYTHON SOURCE LINES 43-47 .. code-block:: Python omega = RandomVariable('omega') density = dist.normalpdf(omega) b_time_rnd = B_TIME + B_TIME_S * omega .. GENERATED FROM PYTHON SOURCE LINES 48-49 Definition of the utility functions .. GENERATED FROM PYTHON SOURCE LINES 49-53 .. code-block:: Python v1 = ASC_TRAIN + b_time_rnd * TRAIN_TT_SCALED + B_COST * TRAIN_COST_SCALED v2 = ASC_SM + b_time_rnd * SM_TT_SCALED + B_COST * SM_COST_SCALED v3 = ASC_CAR + b_time_rnd * CAR_TT_SCALED + B_COST * CAR_CO_SCALED .. GENERATED FROM PYTHON SOURCE LINES 54-55 Associate utility functions with the numbering of alternatives .. GENERATED FROM PYTHON SOURCE LINES 55-57 .. code-block:: Python util = {1: v1, 2: v2, 3: v3} .. GENERATED FROM PYTHON SOURCE LINES 58-59 Associate the availability conditions with the alternatives .. GENERATED FROM PYTHON SOURCE LINES 59-61 .. code-block:: Python av = {1: TRAIN_AV_SP, 2: SM_AV, 3: CAR_AV_SP} .. GENERATED FROM PYTHON SOURCE LINES 62-63 The choice model is a logit, with availability conditions .. GENERATED FROM PYTHON SOURCE LINES 63-67 .. code-block:: Python condprob = models.logit(util, av, CHOICE) prob = Integrate(condprob * density, 'omega') logprob = log(prob) .. GENERATED FROM PYTHON SOURCE LINES 68-71 .. code-block:: Python the_biogeme = bio.BIOGEME(database, logprob) the_biogeme.modelName = '06estimation_integral' .. GENERATED FROM PYTHON SOURCE LINES 72-74 .. code-block:: Python results = the_biogeme.estimate() .. GENERATED FROM PYTHON SOURCE LINES 75-77 .. code-block:: Python print(results.short_summary()) .. rst-class:: sphx-glr-script-out .. code-block:: none Results for model 06estimation_integral Nbr of parameters: 5 Sample size: 6768 Excluded data: 3960 Final log likelihood: -5214.88 Akaike Information Criterion: 10439.76 Bayesian Information Criterion: 10473.86 .. GENERATED FROM PYTHON SOURCE LINES 78-80 .. code-block:: Python pandas_results = results.get_estimated_parameters() pandas_results .. raw:: html
Value Rob. Std err Rob. t-test Rob. p-value
ASC_CAR 0.134900 0.047631 2.832218 4.622627e-03
ASC_TRAIN -0.403873 0.058895 -6.857458 7.009726e-12
B_COST -1.284092 0.046169 -27.812680 0.000000e+00
B_TIME -2.254195 0.118544 -19.015637 0.000000e+00
B_TIME_S 1.649665 0.136564 12.079820 0.000000e+00


.. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 20.502 seconds) .. _sphx_glr_download_auto_examples_montecarlo_plot_b06estimation_integral.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_b06estimation_integral.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_b06estimation_integral.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_b06estimation_integral.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_