Calculating indicators with PythonBiogeme

Michel Bierlaire
May 17, 2017

Report TRANSP-OR 170517
Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne
transp-or.epfl.ch

SERIES ON BIOGEME

The package Biogeme (biogeme.epfl.ch) is designed to estimate the
parameters of various models using maximum likelihood estimation. But
it can also be used to extract indicators from an estimated model. In this
document, we describe how to calculate some indicators particularly relevant
in the context of discrete choice models: market shares, revenues, elasticities,
and willingness to pay. Clearly, the use of the software is not restricted to
these indicators, neither to choice models. But these examples illustrate most
of the capabilities.

1 The model

See [01nestedEstimation.py| in Section [A]]

We consider a case study involving a transportation mode choice model,
using revealed preference data collected in Switzerland in 2009 and 2010 (see
Atasoy et al., 2013). The model is a nested logit model with 3 alternatives:
public transportation, car and slow modes. The utility functions are defined
as:

V_PT = BETA.TIME FULLTIME % TimePT_scaled * fulltime +
BETA TIME_.OTHER * TimePT_scaled * notfulltime -+
BETA_COST x MarginalCostPT _scaled

V_.CAR = ASC_CAR +

BETA_TIME FULLTIME % TimeCar_scaled * fulltime +
BETA TIME.OTHER * TimeCar_scaled * notfulltime +
BETA_COST * CostCarCHF _scaled

VSM = ASCSM +
BETA DIST_ MALE % distance_km_scaled * male -+
BETA DIST FEMALE * distance_km_scaled * female +
BETADIST_.UNREPORTED % distance_km_scaled % unreportedGender

where ASC_CAR, ASC_SM, BETA_TIME_FULLTIME, BETA_TIME_OTHER, BETA _DIST_MALE,
BETA _DIST_FEMALE, BETA_DIST_.UNREPORTED, BETA_COST, are parameters
to be estimated, TimePT scale, Marginal CostPT_scaled, TimeCar_scale, CostCarCHF _scale,
distance_km_scale are attributes and fulltime, notfulltime, male, female, unreportedGender
are socio-economic characteristics. The two alternatives “public transporta-
tion” and “slow modes” are grouped into a nest. The complete specification
is available in the file DInestedEstimation.py, reported in Section [A.1l We refer
the reader to Bierlaire (2016) for an introduction to the syntax.

The parameters are estimated using PythonBiogeme. Their values are
reported in Table[Il A file named 0lnestedEstimation_param.py is also generated.
It contains the values of the estimated parameters written in PythonBiogeme
syntax, as well as the code necessary to perform a sensitivity analysis. This
code provides the variance-covariance matrix of the estimates.

http://biogeme.epfl.ch/examples/indicators/python/01nestedEstimation.py
http://biogeme.epfl.ch/examples/indicators/python/01nestedEstimation.py

Robust

Parameter Coeft. Asympt.
number Description estimate std. error t-stat p-value
1 ASC.CAR 0.261 0.100 2.61 0.01
2 ASC-SM 0.0590 0.217 0.27 0.79
3 BETA_COST -0.716 0.138 -5.18 0.00
4 BETA_DIST_FEMALE -0.831 0.193 -4.31 0.00
5 BETA_DIST_MALE -0.686 0.161 -4.27 0.00
6 BETA_DIST_.UNREPORTED -0.703 0.196 -3.58 0.00
7 BETA_TIME_FULLTIME -1.60 0.333 -4.80 0.00
8 BETA_TIME_OTHER -0.577 0.296 -1.95 0.05
9 NESTNOCAR 1.53 0.306 1.73" 0.08

Summary statistics

Number of observations = 1906
Number of excluded observations = 359
Number of estimated parameters = 9

L(By) = —2093.955
L(B) = —1298.498
—2[L(Bo) — L(B)] = 1590.913
p2 = 0.380
o2 = 0.376

Lt test against 1

Table 1: Nested logit model: estimated parameters

2 Market shares and revenues
See [02nestedSimulation.py| in Section [A.2]

Once the model has been estimated, it must be used to derive useful in-
dicators. PythonBiogeme provides a simulation feature for this purpose. We
start by describing how to calculate market shares using sample enumera-
tion. It is necessary to have a sample of individuals from the population. For
each of them, the value of each of the variables involved in the model must
be known. Note that it is possible to use the same sample that what used
for estimation, but only if it contains revealed preferences data. Indeed, the
calculation of indicators require real values for the variables, not values that
have been engineered to the sake of estimating parameters, like in stated
preferences data. It is the procedure used in this document.

More formally, consider a choice model P, (i|xn,Cy) providing the proba-
bility that individual n chooses alternative i within the choice set C,, given
the explanatory variables x,,. In order to calculate the market shares in the
population of size N, a sample of Ny individuals is drawn. As it is rarely
possible to draw from the population with equal sampling probability, it is
assumed that stratified sampling has been used, and that each individual n
in the sample is associated with a weight w,, correcting for sampling biases.
The weights are normalized such that

N
No= Y . 1)
n=1

An estimator of the market share of alternative i in the population is

N
1 : .
W, = N_s ; Wi Pr (1xn, Cn). (2)

If the alternative i involves a price variable pi,, the expected revenue gener-
ated by 1 is

N
N ZS .
Ri = N_s n=1 Wnpinpn(l|xn)pin’cﬂ)‘ <3)

In practice, the size of the population is rarely known, and the above quantity
is used only in the context of price optimization. In this case, the factor N/Ng
can be omitted.

To calculate (2)) and (B]) with PythonBiogeme, a specification file must
be prepared. In our example, the file [02nestedSimulation.py, reported in Sec-
tion [A.2] has been produced as follows:

http://biogeme.epfl.ch/examples/indicators/python/02nestedSimulation.py
http://biogeme.epfl.ch/examples/indicators/python/02nestedSimulation.py

. Start with a copy of the model estimation file 01nestedEstimation.pyl.

. Replace all Beta statements by the equivalent statements including the
estimated values in the file 0lnestedEstimation_param.py.

. Copy and paste the code for the sensitivity analysis, that is

e the names of the parameters: the line starting with names=...

e the values of the variance-covariance matrix: the line starting with

values=...
e the definition of the matrix itself:

ve = bioMatrix (9 ,names, values)
BIOGEME OBJECT.VARCOVAR = vc

. Remove the statement related to the estimation:
BIOGEME OBJECT .ESTIMATE = Sum(logprob , ’obsIter’)

. Replace it by the statement for simulation:
BIOGEME_OBJECT.SIMULATE = Enumerate (simulate , ’obsIter’)

The simulate variable must be a dictionary describing what has to be
calculated during the sample enumeration. In this case, we calculate,
for each individual in the sample, the choice probability of each al-
ternative. We also calculate the expected revenue generated by each
individual for the public transportation companies, using the following
statement:
simulate = {’Prob. car’: prob_car,

’Prob. public transportation’: prob_pt,

’Prob. slow modes’:prob_sm,

’Revenue public transportation’:
prob_pt * MarginalCostPT}

Each entry of this dictionary corresponds to a quantity that will be
calculated. The key of the entry is a string, that will be used for the
reporting. The value must be a valid formula describing the calculation.
In our example, we have defined

prob_pt = nested (V,av,nests ,0)

prob_car = nested (V,av,nests 1)

prob_sm = nested(V,av,nests,2)

calculating the choice probability of each alternative as provided by the
nested logit model.

http://biogeme.epfl.ch/examples/indicators/python/01nestedEstimation.py

In the output of the estimation (see the file 01nestedEstimation.html), the
sum of all weights have been calculated using the statement

BIOGEME OBJECT . STATISTICS[’Sum of weights’] = Sum(Weight,’obsIter’)

The reported result is 0.814484. Therefore, in order to verify (), we intro-

duce the following statements:

theWeight = Weight * 1906 / 0.814484
BIOGEME_OBJECT .WEIGHT = theWeight

as there are 1906 entries in the data file.

The following statements are included for the calculation of elasticities

and will be used later (see Section [for more details):

BIOGEME_OBJECT.STATISTICS [’ Normalization for
Sum(theWeight * prob_pt ,’obsIter’)

BIOGEME_OBJECT.STATISTICS [’ Normalization for
Sum (theWeight % prob_car ,’obsIter’)

BIOGEME OBJECT . STATISTICS [’ Normalization for
Sum(theWeight * prob_sm ,’obsIter’)

The simulation is performed using the statement

pythonbiogeme 02nestedSimulation optima.dat

elasticities SM’]

It generates the file 02nestedSimulation.html, that contains the following sec-

tions:

e The preamble reports information about the version of PythonBiogeme,
useful URLs and the names of the files involved in the run.

e Statistics: this section is the same as for the estimation, and reports

the requested statistics:

Alt. 0 available: 1906

Alt. 0 chosen: 536

Alt. 1 available: 1906

Alt. 1 chosen: 1256

Alt. 2 available: 1906

Alt. 2 chosen: 114
Cte loglikelihood (only for full choice sets): —1524.92

Gender: females: 871

Gender: males: 943

Gender: unreported: 92
Normalization for elasticities CAR: 1244.77
Normalization for elasticities PT: 535.086
Normalization for elasticities SM: 126.147
Null loglikelihood: —2093.96

Number of entries: 1906

Occupation: full time: 798
Sum of weights: 0.814484

elasticities PT’] =

elasticities CAR’] =

http://biogeme.epfl.ch/examples/indicators/python/01nestedEstimation.html
http://biogeme.epfl.ch/examples/indicators/python/02nestedSimulation.html

e The simulation report contains two parts: the aggregate values, and
the detailed records. We start by describing the latter. It reports, for
each row of the sample file, the weight wy, (last column) and, for each
entry in the dictionary defined by BIOGEME_OBJECT.SIMULATE

1. the calculated quantity,

2. the 90% confidence interval for this quantity. It is calculated using
simulation. As the estimates have been obtained from maximum
likelihood, they are (asymptotically) normally distributed. There-
fore, we draw from a multivariate normal distribution N(E,f),
where 6 is the vector of estimated parameters, and T is the variance-
covariance matrix defined by the BIOGEME OBJECT.VARCOVAR
statement. The number of draws is controlled by the parameter
NbrOfDrawsForSensitivityAnalysis. The requested quantity is calcu-
lated for each realization, and the 5% and the 95% quantiles of
the obtained simulated values are reported to generate the 90%
confidence interval. Note that the confidence interval is reported
only if the statement

BIOGEME_OBJECT .VARCOVAR = vc

is present. If you do not need the confidence intervals, simply
remove this statement from the .py file.

e Simulation report: aggregate values. For each calculated quantity, ag-
gregate indicators are calculated. Denote by z,, the calculated quantity
(in this case, the probability that individual n chooses the car alterna-
tive, for instance). Then, the following aggregate values are reported,
together with the associated confidence interval (if requested):

— Total:
N

>z (4)

n=1

— Weighted total:

— Average:

— Weighted average:

1
—) Wuz,. (7)
S n=1
— Non zeros:
N
> 8(za #0), (8)
n=1
where | iz, 20
_ I Zn >
8(zn #0) = { 0 otherwise. 9)
— Non zeros average:
N
o (10)
Zni] 6(ZTL 7& 0)
— Weighted non zeros average:
N
%“:‘ WnZn (11)
Zni] 6(211 ;é O)
— Minimum:
min z,,. (12)
— Maximum:
max z;. (13)

Therefore, the result of (2) is available in the row “Weighted average”.
In this example, the market shares are:

e car: 65.3078% (confidence interval: [60.5884%,69.0407%)]),
e public transportation: 28.0738% (confidence interval: [23.603%,32.391%),
e slow modes: 6.61844% (confidence interval: 4.54637%,10.417%).

The result of (@) is obtained in the row “Weighted total”. In this case, the
expected revenue (generated by the individuals in the sample) is 3018.29
(confidence interval: [2442.87,3826.36)).

3 Elasticities

Consider now one of the variables involved in the model, for instance Xin,
the kth variable associated by individual n to alternative i. The objective
is to anticipate the impact of a change of the value of this variable on the
choice of individual n, and subsequently on the market share of alternative
i.

3.1 Point elasticities

If the variable is continuous, we assume that the relative (infinitesimal)
change of the variable is the same for every individual in the population,

that is
OXink . OXipk OXik

= = 14
Xink Xipk Xik ’ ()
where
1 &
Xik = N Z Xink- (15)
$ =1

The disaggregate direct point elasticity of the model with respect to the vari-
able Xink is defined as

Prli) _ 0Py (ilxn, Cr) Xink

. 1
Fink axink Pn(uxm Cn) (6)

It is called

e disaggregate, because it refers to the choice model related to a specific
individual,

e direct, because it measures the impact of a change of an attribute of
alternative 1 on the choice probability of the same alternative,

e point, because we consider an infinitesimal change of the variable.

The aggregate direct point elasticity of the model with respect to the average
value xi is defined as

oW, x;
Wi i Ak
= —_— 17
Xik aXik Wi ()
Using (2)), we obtain
1 & 0P, (ixn, Cn) x4
EW~ — N n ny “’n ik) 1
Xik Ns ;W aXik Wi (8)

8

From (I4]), we obtain

EWi — l At w aPn(ilxrucn) Xink _ L

W S
. n n .
Xik N, OXink W; N, Xink W; ’

where the second equation is derived from ([I6]). Using (2) again, we obtain

N .
W, Pr(i) Wi P (ixn, Cr)
EXik - Exmk ZNS w.. P (1|X C) (20)
n=1 "Ynhn ny “n

n=1

This equation shows that the calculation of aggregate elasticities involves a
weighted sum of disaggregate elasticities. However, the weight is not w,, as
for the market share, but a normalized version of w,, P (i|xn,Cy).
The disaggregate cross point elasticity of the model with respect to the
variable Xjni is defined as
Pn(i) __ aPn(uchn) Xjnk (21)
ik axjnk Pn(uxn) Cn) .
It is called cross elasticity because it measures the sensitivity of the model
for alternative i with respect to a modification of the attribute of another
alternative.

3.2 Arc elasticities

A similar derivation can be done for arc elasticities. In this case, the relative
change of the variable is not infinitesimal anymore. The idea is to analyze
a before/after scenario. The variable Xy in the before scenario becomes
Xink + AXink in the after scenario. As above, we assume that the relative
change of the variable is the same for every individual in the population,

that is A A A
Xink _ lek _ X'lk’ (22)
Xink Xipk Xik

where xi is defined by ([H). The disaggregate direct arc elasticity of the

model with respect to the variable Xy is defined as

Pﬁ(i) _ AP, (ifxn, Cn) 'Xink . (23)
Hink Axink Pn (l’Xna Cn)
The aggregate direct arc elasticity of the model with respect to the average
value x;i is defined as

AW; x;
Xwi' — i Ak . (24)
o Axge Wi
The two quantities are also related by (20)), following the exact same deriva-
tion as for the point elasticity.

3.3 Using PythonBiogeme for point elasticities

See [03 nestedElasticities . py in Section [A.3]

The calculation of (I6) involves derivatives. For simple models such as
logit, the analytical formula of these derivatives can easily be derived. How-
ever, their derivation for advanced models can be tedious. It is common
to make mistakes in the derivation itself, and even more common to make
mistakes in the implementation. Therefore, PythonBiogeme provides an op-
erator that calculates the derivative of a formula. It is illustrated in the file
03 nestedElasticities .py, reported in Section [A.3l The statements that trigger
the calculation of the elasticities are:

elas_pt_time = Derive(prob_pt,’TimePT’) x TimePT / prob_pt
elas_pt_cost = Derive(prob_pt,’MarginalCostPT’) % MarginalCostPT / prob_pt

elas_car_time = Derive(prob_car ,’TimeCar’) % TimeCar / prob_car
elas_car_cost = Derive(prob_car ,’CostCarCHF’) x CostCarCHF / prob_car
elas_sm_dist = Derive(prob_sm,’distance_km’) % distance_.km / prob_sm

The above syntax should be self-explanatory. But there is an important as-
pect to take into account. In the context of the estimation of the parameters
of the model, the variables have been scaled in order to improve the numerical
properties of the likelihood function, using statements like

TimePT _scaled = DefineVariable(’TimePT_scaled’, TimePT / 200)
The DefineVariable operator is designed to preprocess the data file, and can be
seen as a way to add another column in the data file, defining a new variable.
However, the relationship between the new variable and the original one is
lost. Therefore, PythonBiogeme is not able to properly calculate the deriva-
tives. In this example, the variable of interest is TimePT, not TimePT scaled.
And their relationship must be explicitly known to correctly calculate the
derivatives. Consequently, all statements such as

TimePT _scaled = DefineVariable(’TimePT_scaled’, TimePT / 200)

should be replaced by statements such as
TimePT _scaled = TimePT / 200

in order to maintain the analytical structure of the formula to be derived.

The aggregate point elasticities can be obtained by aggregating the dis-
aggregate elasticities, using (20). This requires the calculation of the nor-
malization factors

N
> WiPn(ifn, Cn). (25)
n=1

This has been performed during the previous simulation using the statements

10

http://biogeme.epfl.ch/examples/indicators/python/03nestedElasticities.py
http://biogeme.epfl.ch/examples/indicators/python/03nestedElasticities.py

BIOGEME_OBJECT.STATISTICS [’ Normalization for elasticities PT’] = \
Sum(theWeight % prob_pt ,’obsIter’)

BIOGEME_OBJECT.STATISTICS [’ Normalization for elasticities CAR’] = \
Sum(theWeight % prob_car ,’obsIter’)
BIOGEME OBJECT.STATISTICS [’ Normalization for elasticities SM’] = \

Sum(theWeight * prob_sm ,’obsIter’)

Therefore, we have now included the following statements:

normalization_.pt = 535.086
normalization_car = 1244.77
normalization_sm = 126.147

The quantities that must be calculated for each individual in order to derive
the aggregate elasticities, correspond to the following entries in the dictio-
nary:

’Agg. Elast. PT - Time’: elas_pt_-time * prob_pt / normalization_pt ,
’Agg. Elast. PT - Cost’: elas_pt_cost % prob_pt / normalization_pt ,

’Agg. Elast. Car - Time’: elas_car_time % prob_car / normalization_car ,
’Agg. Elast. Car - Cost’: elas_car_cost * prob_car / normalization_car ,
’Agg. Elast. Slow modes - Distance’: elas_sm_dist * prob_sm / normalization_sm

Note that the weights have not been included in the above formula, so that
the values of the aggregate elasticities can be found in the row “Weighted
total”:

e Car — cost: -0.0906321,

e Car — travel time: -0.0440771,

Public transportation — cost: -0.320246,

Public transportation — travel time: -0.274315,
e Slow modes — distance: -1.09095.

Equivalently, we could have used statements like

’Agg. Elast. PT - Time’: theWeight % elas_pt_time * prob_pt / normalization_pt ,

and the aggregate value would have been found in the row “Total” instead
of “Weighted total’. Note also that we have omitted to report the confidence
intervals in this example, by commenting out the statement:

#BIOGEME_OBJECT. VARCOVAR = vc

The results are found in the file (03 nestedElasticities . html.

11

http://biogeme.epfl.ch/examples/indicators/python/03nestedElasticities.html

3.4 Using PythonBiogeme for cross elasticities

See [04 nestedElasticities . py in Section [A.4]

The calculation of (2I]) is performed in a similar way as the direct elas-
ticities ([I6), using the following statements:
elas_car_cost = Derive(prob_car,’MarginalCostPT’) % MarginalCostPT / prob_car
elas_car_time = Derive(prob_car ,’TimePT’) % TimePT / prob_car

elas_pt_cost = Derive(prob_pt,’CostCarCHF’) x CostCarCHF / prob_pt
elas_pt_time = Derive(prob_pt,’TimeCar’) % TimeCar / prob_pt

They calculate the following elasticities:

choice of car with respect to the marginal cost of public transportation,

choice of car with respect to travel time by public transportation,

choice of public transportation with respect to cost of the car,
e choice of public transportation with respect to travel time by car.

The corresponding aggregate elasticities are calculated exactly like for the
direct case, and their values can be found in the row “Weighted total”.

e Agg. Elast. Car - Cost PT: 0.123008
e Agg. Elast. Car - Time PT: 0.106567
e Agg. Elast. PT - Cost car: 0.199984
e Agg. Elast. PT - Time car: 0.0953097

Note that these values are now positive. Indeed, when the travel time or
travel cost of a competing mode increase, the market share increases.
The results are found in the file 04 nestedElasticities . html.

3.5 Using PythonBiogeme for arc elasticities

See 05 nestedElasticities . py in Section [A.5]

Arc elasticities require a before and after scenarios. In this case, we
calculate the sensitivity of the market share of the slow modes alternative
when there is a uniform increase of 1 kilometer.

The “before” scenario is represented by the same model as above. The
after scenario is modeled using the following statements:

12

http://biogeme.epfl.ch/examples/indicators/python/04nestedElasticities.py
http://biogeme.epfl.ch/examples/indicators/python/04nestedElasticities.html
http://biogeme.epfl.ch/examples/indicators/python/05nestedElasticities.py

delta_dist =1

distance_km_scaled_after = (distance_.km + delta_dist) / 5

V_SM_after = ASCSM + \
BETA DIST MALE * distance_km_scaled_after x male + \
BETA DIST FEMALE * distance_km_scaled_after * female + \
BETADIST_.UNREPORTED * distance_km_scaled_after * unreportedGender

V_after = {0: V_PT,

1: V.CAR,
2: V_SM_after}
prob_sm_after = nested (V_after ,av,nests ,2)

Then, the arc elasticity is calculated as

elas_sm_dist = \
(prob_sm_after — prob_sm) * distance_km / (prob_sm x delta_dist)

The aggregate elasticity is calculated as explained above. It is equal here to
-1.00708, and the confidence interval is [-1.7212,-0.562574].
The results are found in the file 05 nestedElasticities . html.

4 Willingness to pay
See [06nestedWTP.py in Section [A.6]

If the model contains a cost or price variable (like in this example), it
is possible to analyze the trade-off between any variable and money. This
reflects the willingness of the decision maker to pay for a modification of
another variable of the model. A typical example in transportation is the
value of time, that is the amount of money a traveler is willing to pay in
order to decrease her travel time.

Let ci, be the cost of alternative i for individual n. Let xi, be the value
of another variable of the model. Let Vin(Cin, Xink) be the value of the utility
function. Consider a scenario where the variable of interest takes the value
Xink + 05 We denote by 65, the additional cost that would achieve the same
utility, that is

Vin(Cin + 5icm Xink + 5?nk) = Vin(Cin, Xink)- (26)

The willingness to pay to increase the value of xiny is defined as the additional
cost per unit of x, that is

6icn/6§nk» (27)
and is obtained by solving Equation (28]). If xiy and c¢i, appear linearly in
the utility function, that is if

vin(cimxink) = Bccin + Bxxink +) (28)

13

http://biogeme.epfl.ch/examples/indicators/python/05nestedElasticities.html
http://biogeme.epfl.ch/examples/indicators/python/06nestedWTP.py

and
vin(cin + 6icn) Xink + 6)icnk) = Bc(cin + 6fn) + Bx(xink + 6)1(nk) +e (29)

Therefore, [27]) is
égn/éicnk = _Bx/ﬁc- (30)

If xin is a continuous variable, and if Vi, is differentiable in X and cin, we
can invoke Taylor’s theorem in (26]):

Vin (Ciny Xink) = Vin(Cin + 0%, Xink + O5i)

. OVin . Vi
~ Vin(Ciny Xink) + 5111@(0@ Xink) + 5mkm(cim Xink)
(31)
Therefore, the willingness to pay is equal to
o5, . (avin/axink)(cin)xink)‘ (32)

5?nk B (avin/acin)(cin) Xink)

Note that if xinx and ¢y, appear linearly in the utility function, (32) is the
same as (30). If we consider now a scenario where the variable under interest
takes the value Xinx — 0%y, the same derivation leads to the willingness to
pay to decrease the value of Xiny:

6‘1:71 _ (avin/axink) (Cin) Xink)

= . 33
6?nk (avin/acin) (Cin) Xink) ()
The calculation of the value of time corresponds to such a scenario:
b OVin/0tin)(Cin, tin
£ (0Vin/dtin) (Cinytin) _ B »

58 (@Vin/0ct)(Cimy tn) B’

where the last equation assumes that V is linear in these variables. Note that,
in this special case of linear utility functions, the value of time is constant
across individuals, and is also independent of 8f,. This is not true in general.

The calculation of (B3] involves the calculation of derivatives. It is done
in Pythonbiogeme using the following statements:

WTP PT_TIME = Derive (VPT,’TimePT’) / Derive(V_PT, ’MarginalCostPT’)
WTP_CARTIME = Derive (V.CAR, >TimeCar’) / Derive (V.CAR, >CostCarCHF’)

The full specification file can be found in Section [A.6l The aggregate values
are found in the “Weighted average” row of the report file: 3.95822 CHF /hour
(confidence interval: [1.98696,7.81565]). Note that this value is abnormally
low, which is a sign of a potential poor specification of the model. Note also

14

that, with this specification, the value of time is the same for car and public
transportation, as the coefficients of the time and cost variables are generic.

Finally, it is important to look at the distribution of the willingness to
pay in the population/sample. The detailed records of the report file allows
to do so. It is easy to drag and drop the HTML report file into your favorite
spreadsheet software in order to perform additional statistics. In this exam-
ple, the value of time takes two values, depending on the employment status
of the individual:

e Full time: 6.68992 (confidence interval: [4.15056, 11.1866])
e Not full time: 2.41847 (confidence interval: [0.829511, 5.91561])

The results are found in the file [06nestedWTP.html.

5 Conclusion

PythonBiogeme is a flexible tool that allows to extract useful indicators from
complex models. In this document, we have presented how some indicators
relevant for discrete choice models can be generated. The HTML format of
the report allows to display the report in your favorite browser. It also allows
to import the generated values in a spreadsheet for more manipulations.

15

http://biogeme.epfl.ch/examples/indicators/python/06nestedWTP.html

© ® N O s W N =

R R R W W W W W W W W W W NN NN NN NN NN e e e e e e e e e e
W N O © 0 N OO R W N = O © OO W NNy O Y g e W NN = O

A Complete specification files

A.l OlnestedEstimation.py

Available at biogeme.epfl.ch/examples/indicators /python /01nestedEstimation.py

File OlnestedEstimation.py
Simple nested logit model for the Optima case study
Wed May 10 10:55:12 2017

from biogeme import =*

from headers import x

from loglikelihood import x
from statistics import
from nested import =

Three alternatives :

CAR: automobile

PT: public transportation

SM: slow mode (walking, biking)

List of parameters to be estimated

ASC_CAR = Beta(’ASC_CAR’,0,—10000,10000,0)

ASCSM = Beta(?ASC_SM’,0,—10000,10000,0)

BETA_TIME_FULLTIME = Beta(’BETA_TIME_FULLTIME’,0,—10000,10000,0)
BETA_TIME.OTHER = Beta(’BETA_TIME_OTHER’,0,—10000,10000,0)

BETA DIST MALE = Beta(’BETA_DIST_MALE’,0,—10000,10000,0)
BETA DIST FEMALE = Beta(’BETA_DIST_FEMALE’ ,0,—10000,10000,0)

BETA DIST_ UNREPORTED = Beta(’BETA_DIST_UNREPORTED’ ,0,—10000,10000,0)
BETA_COST = Beta(’BETA_C0ST’,0,—10000,10000,0)

##Definition of wvariables:
For numerical reasons, it is good practice to scale the data to
that the wvalues of the parameters are around 1.0.

The following statements are designed to preprocess the data.
It is like creating a mew columns in the data file. This

should be preferred to the statement like

TimePT_scaled = Time_PT / 200.0

which will cause the division to be reevaluated again and again,
throuh the iterations. For models taking a long time to
estimate , it may make a significant difference.

RN NI NS N

TimePT _scaled = DefineVariable(’TimePT_scaled’, TimePT / 200)
TimeCar_scaled = DefineVariable(’TimeCar_scaled’, TimeCar / 200)
MarginalCostPT_scaled = DefineVariable (’MarginalCostPT_scaled’,
MarginalCostPT / 10)
CostCarCHF _scaled = DefineVariable (’CostCarCHF _scaled’,

16

http://biogeme.epfl.ch/examples/indicators/python/01nestedEstimation.py

44 CostCarCHF / 10)

45 distance_km_scaled = DefineVariable (’distance_km_scaled’,

46 distance_km / 5)

47

48 male = DefineVariable (’male’,Gender =— 1)

49 female = DefineVariable(’female’,Gender = 2)

50 unreportedGender = DefineVariable (’unreportedGender’ , Gender = —1)
51

52 fulltime = DefineVariable (’fulltime’,OccupStat =— 1)

53 notfulltime = DefineVariable(’notfulltime’ ,OccupStat != 1)

54
55 ### Definition of utility functions:
56 V_PT = BETA TIMEFULLTIME % TimePT_scaled * fulltime + \

57 BETA TIME.OTHER * TimePT_scaled * notfulltime + \

58 BETA COST * MarginalCostPT _scaled

s59. V.CAR = ASCCAR + \

60 BETA TIME FULLTIME % TimeCar_scaled x fulltime + \

61 BETA TIME.OTHER % TimeCar_scaled * notfulltime + \

62 BETA_ COST % CostCarCHF _scaled

63 V.SM = ASCSM + \

64 BETA DIST MALE * distance_km_scaled * male + \

65 BETA DIST FEMALE % distance_km_scaled x female + \

66 BETA DIST_ UNREPORTED % distance_km _scaled * unreportedGender

67

6s # Associate utility functions with the mumbering of alternatives

e V= {0: VPT,

70 1: V_CAR,

71 2: V.SM}

72

73 # Associate the availability conditions with the alternatives.

74 # In this example all alternatives are available for each individual.
5 av = {0: 1,
76 1: 1,
77 2: 1}

78

79 ### DEFINITION OF THE NESTS:

so # 1: mests parameter

s1 # 2: list of alternatives

82

83 NESTNOCAR = Beta (’NEST_NOCAR’ ,1,1.0,10,0)

84

ss CAR= 1.0 , [1]

ss NO.CAR = NESTNOCAR , [0, 2]

s7 mnests = CAR, NO.CAR

88

so # All observations verifying the following expression will not be
90 # considered for estimation

91 BIOGEME_OBJECT.EXCLUDE = Choice =— —1

92

17

93

95
96
97
98
99
100
101
102

104
105
106
107

109
110
111
112
113
114
115
116
117
118
119

© 0w N9 O O W N =

e e
o U W N = O

The choice model is a nested logit, with availability conditions
logprob = lognested (V,av, nests , Choice)

Defines an itertor on the data
rowlterator (’obsIter’)

#Statistics

nullLoglikelihood (av,’obsIter’)

choiceSet = [0,1,2]

cteLoglikelihood (choiceSet , Choice, ’obsIter’)
availabilityStatistics (av,’obsIter’)

BIOGEME_OBJECT.STATISTICS [’ Gender: males’] = \
Sum(male , ’obsIter’)

BIOGEME OBJECT.STATISTICS [’ Gender: females’] = \
Sum (female , >obsIter?)

BIOGEME OBJECT . STATISTICS [> Gender : unreported’] = \
Sum(unreportedGender , > obsIter’)

BIOGEME OBJECT.STATISTICS[’Occupation: full time’] = \
Sum(fulltime ,’obsIter’)

BIOGEME OBJECT. STATISTICS [’ Sum of weights’] = \
Sum (Weight , >obsIter’)

Define the likelihood function for the estimation
BIOGEME _OBJECT .ESTIMATE = Sum(logprob ,’obsIter’)
BIOGEME_OBJECT .PARAMETERS| ’ optimizationAlgorithm’]| = "CFSQP"

A.2 02nestedSimulation.py

Available at biogeme.epfl.ch/examples/indicators/python /02nestedSimulation.py

File 02nestedSimulation . py
Simple nested logit model for the Optima case study
Wed May 10 11:24:82 2017

from biogeme import x
from headers import x
from statistics import x
from nested import x

Three alternatives :
CAR: automobile

PT: public transportation
SM: slow mode (walking, biking)

List of parameters and their estimated value.
ASC.CAR = Beta(’ASC_CAR’ ,0.261291,—10000,10000,0,>ASC_CAR’)

18

http://biogeme.epfl.ch/examples/indicators/python/02nestedSimulation.py

17 ASCSM = Beta(’ASC_SM’ ,0.0590204,—10000,10000,0,’>ASC_SM’)

13 BETA TIME_FULLTIME = \

19 Beta(’BETA_TIME_FULLTIME’,—1.59709,—10000,10000,0,’BETA_TIME_FULLTIME’)
20 BETA TIME OTHER = \

21 Beta(’BETA_TIME_OTHER’,—0.577362,—10000,10000,0,’BETA_TIME_OTHER’)

22 BETA DIST MALE = \

23 Beta (’BETA_DIST_MALE’,—0.686327,—10000,10000,0,’ BETA_DIST_MALE’)

24 BETADIST FEMALE = \

25 Beta(’BETA_DIST_FEMALE’,—0.83121,—10000,10000,0,”BETA_DIST_FEMALE’)
26 BETA DIST UNREPORTED = \

27 Beta(’BETA_DIST_UNREPORTED’ ,—0.702974,—10000,10000,0,’BETA_DIST_UNREPORTED’)
2s BETA_COST = \

209 Beta(’BETA_COST’,—0.716192,—10000,10000,0,’BETA_COST’)

30

31

32 ##Definition of variables:

33 # For numerical reasons, it is good practice to scale the data to

34 # that the wvalues of the parameters are around 1.0.

35

36 # The following statements are designed to preprocess the data. It is
37 # like creating a new columns in the data file. This should be

38 # preferred to the statement like

39 # TimePT_scaled = Time_PT / 200.0

a0 # which will cause the division to be reevaluated again and again,

a1 # throuh the iterations. For models taking a long time to estimate, it
12 # may make a significant difference.

43

44 TimePT_scaled = DefineVariable (’TimePT_scaled’, TimePT / 200)

45 TimeCar_scaled = DefineVariable (’TimeCar_scaled’, TimeCar / 200)

46 MarginalCostPT _scaled = DefineVariable (’MarginalCostPT_scaled’,

a7 MarginalCostPT / 10)
48 CostCarCHF _scaled = DefineVariable (’CostCarCHF _scaled’,

49 CostCarCHF / 10)

50 distance_km_scaled = DefineVariable(’distance_km_scaled’,

51 distance_km / 5)

52

53 male = DefineVariable (’male’ ,Gender — 1)

54 female = DefineVariable (’female’ ,Gender =— 2)

55, unreportedGender = DefineVariable(’unreportedGender’ h Gender = —1)
56

57 fulltime = DefineVariable (’fulltime’,OccupStat =— 1)

58 notfulltime = DefineVariable(’notfulltime’ ,OccupStat != 1)

59
60 ### Definition of wutility functions:
61 VPT = BETA TIME FULLTIME % TimePT_scaled * fulltime + \

62 BETA TIME OTHER # TimePT_scaled * notfulltime + \
63 BETA COST x MarginalCostPT _scaled

6 V_.CAR = ASC.CAR + \

65 BETA TIME FULLTIME % TimeCar_scaled x fulltime + \

19

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

107
108
109
110
111
112
113
114

BETATIME.OTHER % TimeCar_scaled * notfulltime + \
BETA_COST % CostCarCHF _scaled
V.SM = ASCSM + \
BETA DIST MALE * distance_km_scaled x male + \
BETADIST FEMALE * distance_km _scaled * female + \
BETA DIST_.UNREPORTED * distance_km_scaled % unreportedGender

Associate wutility functions with the numbering of alternatives
VvV = {0: VPT,

1: V_CAR,

2: V.SM}

Associate the availability conditions with the alternatives.
In this example all alternatives are available for each individual.

av = {0: 1,
1: 1,
2: 1}

DEFINITION OF THE NESTS:
1: mests parameter
2: list of alternatives

NEST NOCAR = Beta (’NEST_NOCAR’ ,1.52853,1,10,0,’NEST_NOCAR’)

CAR = 1.0 , [1]
NOCAR = NESTNOCAR , [0, 2]
nests = CAR, NO.CAR

All observations wverifying the following expression will not be
considered for estimation

exclude = (Choice = -1)

BIOGEME_OBJECT .EXCLUDE = exclude

##
This has been copied—pasted from the file OlnestedEstimation_param.py

##
Code for the sensitivity analysis generated after the estimation of the model

names = [’ASC_CAR’ ,”ASC_SM’ ,’BETA_COST’ ,’BETA_DIST_FEMALE’ ,’BETA_DIST_MALE’ ,’BETA_]
values = [[0.0100225,—0.0023271,0.00151986,0.00285251,0.00621963,0.00247439,0.02359
ve = bioMatrix (9 ,names, values)

BIOGEME_OBJECT .VARCOVAR = vc

The choice model is a nested logit
prob_pt = nested (V,av,nests ,0)
prob_car = nested (V,av,nests 1)

20

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

131
132
133
134

136
137
138
139
140
141
142
143
144
145
146
147
148
149

151
152
153
154

156
157
158
159

prob_sm = nested (V,av,nests ,2)

Defines an itertor on the data
rowlterator (’obsIter’)

#Statistics

nullLoglikelihood (av,’obsIter’)

choiceSet = [0,1,2]

cteLoglikelihood (choiceSet , Choice, ’obsIter’)
availabilityStatistics (av,’obsIter’)

Each weight is mnormalized so that the sum of weights is equal to the
number of entries (1906).

The normalization factor has been calculated during estimation
theWeight = Weight * 1906 / 0.814484

BIOGEME OBJECT . STATISTICS [> Gender: males’]| = \
Sum (male, ’obsIter’)

BIOGEME OBJECT.STATISTICS [’ Gender: females’] = \
Sum(female , >obsIter’)

BIOGEME OBJECT. STATISTICS [’ Gender: unreported’]| = \
Sum(unreportedGender , ’obsIter’)

BIOGEME_OBJECT . STATISTICS [> Occupation: full time’] = \
Sum(fulltime ,’obsIter’)

BIOGEME._OBJECT.STATISTICS [’ Sum of weights’] = \
Sum(Weight , >obsIter?)

BIOGEME_OBJECT.STATISTICS [’ Number of entries’] = \
Sum(l—exclude , >obsIter’)

BIOGEME OBJECT.STATISTICS [’ Normalization for elasticities PT’] = \
Sum(theWeight * prob_pt ,’obsIter’)

BIOGEME OBJECT . STATISTICS [’Normalization for elasticities CAR’] = \
Sum(theWeight % prob_car ,’obsIter’)

BIOGEME OBJECT . STATISTICS [’ Normalization for elasticities SM’] = \

Sum(theWeight % prob_sm ,’obsIter’)

Define the dictionary for the simulation.
simulate = {’Prob. car’: prob_car,
’Prob. public transportation’: prob_pt,
’Prob. slow modes’:prob_sm,
’Revenue public transportation’:
prob_pt % MarginalCostPT}

BIOGEME_OBJECT .WEIGHT = theWeight
BIOGEME_OBJECT .SIMULATE = Enumerate (simulate ,’obsIter’)

21

© 00 N O s W N =

B R R R R W W W W W W W W W W NN NN N NN NN e e e e e e e e e
g ke W N O © 00N O U R W N H O © 0N U R W N H O O N U e W N = O

A.3 03 nestedElasticities . 1934

Available at biogeme.epfl.ch/examples/indicators /python /03nestedElasticities. py

File 03nestedFElasticities.py

Simple nested logit model for the Optima case study
Calculation of direct point elasticities

Wed May 10 12:20:59 2017

from biogeme import *
from headers import x
from statistics import =
from nested import x

Three alternatives:

CAR: automobile

PT: public transportation

SM: slow mode (walking, biking)

List of parameters and their estimated value.
ASC_CAR = Beta(’ASC_CAR’ ,0.261291,—10000,10000,0,’ASC_CAR’)
ASCSM = Beta(’ASC_SM’,0.0590204,—10000,10000,0,’>ASC_SM’)
BETA_ TIME FULLTIME = \

Beta (?BETA_TIME_FULLTIME’,—1.59709,—10000,10000,0,’BETA_TIME_FULLTIME’)
BETA_ TIME_.OTHER = \

Beta (’BETA_TIME_OTHER’ ,—0.577362,—10000,10000,0,’BETA_TIME_OTHER’)
BETA DIST MALE = \

Beta(>BETA_DIST_MALE’ ,—0.686327,—10000,10000,0,’BETA_DIST_MALE’)
BETA DIST FEMALE = \

Beta (?BETA_DIST_FEMALE’ ,—0.83121,—10000,10000,0,”BETA_DIST_FEMALE’)
BETA DIST_ UNREPORTED = \

Beta(’BETA_DIST_UNREPORTED’ ,—0.702974,—10000,10000,0,’BETA_DIST_UNREPORTED’)
BETA_COST = \

Beta (’BETA_COST’,—0.716192,—10000,10000,0,>BETA_COST’)

##Definition of wvariables:
For numerical reasons, it is good practice to scale the data to
that the wvalues of the parameters are around 1.0.

Warning: when calculation derivatives , the total formula must be
known to Biogeme. In this case, the use of

" DefineVariable” must be omitted, if the derivatives must be

#H# calculated with respect to the original variables (as is often the

case)

TimePT_scaled = DefineVariable (' TimePT_scaled’, TimePT / 200)
TimePT _scaled = TimePT / 200

#TimeCar_scaled = DefineVariable (’TimeCar_scaled’, TimeCar /
200)

22

http://biogeme.epfl.ch/examples/indicators/python/03nestedElasticities.py

46 TimeCar_scaled = TimeCar /200

i; #MarginalCostPT_scaled = DefineVariable(’ MarginalCostPT_scaled’, MarginalCostPT
49 ﬁ/larlggin)al(?ostPT,scaled = MarginalCostPT / 10

;(1) #CostCarCHF_scaled = DefineVariable (’CostCarCHF_scaled’, CostCarCHF

52 éosiga{"CHF,scaled = CostCarCHF / 10

53

sa #distance_km_scaled = DefineVariable(distance_km_scaled’, distance_km
/5)

55, distance_km_scaled = distance_km / 5

56

57 male = DefineVariable (’male’,Gender = 1)

55 female = DefineVariable (’female’ ,Gender =— 2)

59 unreportedGender = DefineVariable(’unreportedGender’ h Gender =— —1)

60

61 fulltime = DefineVariable (’fulltime’,OccupStat = 1)

62 mnotfulltime = DefineVariable (’notfulltime’,OccupStat != 1)

63
64 ### Definition of wutility functions:
65

66 V_PT = BETATIMEFULLTIME % TimePT_scaled x fulltime + \

67 BETA TIME.OTHER * TimePT_scaled * notfulltime + \

68 BETA COST *x MarginalCostPT _scaled

69 V.CAR = ASC.CAR + \

70 BETA_TIMEFULLTIME % TimeCar_scaled x fulltime + \

71 BETA TIME OTHER * TimeCar_scaled * notfulltime + \

72 BETA_ COST % CostCarCHF _scaled

73 VSM = ASCSM + \

74 BETA DIST MALE * distance_km_scaled * male + \

75 BETA DIST FEMALE % distance_km_scaled * female + \

76 BETA DIST_ UNREPORTED % distance_km _scaled % unreportedGender

77

78 # Associate utility functions with the numbering of alternatives

79 V= {0: VPT,

80 1: V_CAR,

81 2: V.SM}

82

83 # Associate the awvailability conditions with the alternatives.

sa # In this example all alternatives are available for each individual.
5 av = {0: 1,
86 1: 1,
87 2: 1}

so ### DEFINITION OF THE NESTS:

90 # 1: mests parameter
o1 # 2: list of alternatives

23

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

138
139
140

NESTNOCAR = Beta(’NEST_NOCAR’,1.52853,1,10,0,’NEST_NOCAR’)

CAR = 1.0 , [1]
NO.CAR = NESTNOCAR , [0, 2]
nests = CAR, NO.CAR

All observations wverifying the following expression will not be
considered for estimation

exclude = (Choice = -1)

BIOGEME_OBJECT .EXCLUDE = exclude

##
This has been copied—pasted from the file OlnestedEstimation_param.py

##
Code for the semnsitivity analysis generated after the estimation of the model

names = [>ASC_CAR’ ,’ASC_SM’ ,’BETA_COST’ ,”’BETA_DIST_FEMALE’ ,’BETA_DIST_MALE’ ,’ BETA_]
values = [[0.0100225,—0.0023271,0.00151986,0.00285251,0.00621963,0.00247439,0.02359
ve = bioMatrix (9 ,names, values)

#BIOGEME_OBJECT. VARCOVAR = wvc

The choice model is a nested logit
prob_pt = nested (V,av,nests ,0)
prob_car = nested (V,av,nests 1)
prob_sm = nested(V,av,nests ,2)

elas_pt_time = Derive(prob_pt,’TimePT’) % TimePT / prob_pt
elas_pt_cost = Derive(prob_pt,’MarginalCostPT’) x MarginalCostPT / prob_pt

elas_car_time = Derive(prob_car ,’TimeCar’) % TimeCar / prob_car
elas_car_cost = Derive(prob_car,’CostCarCHF’) x CostCarCHF / prob_car
elas_sm_dist = Derive(prob_sm,’distance_km’) * distance_.km / prob_sm

Defines an itertor on the data
rowlterator (’obsIter’)

#Statistics
nullLoglikelihood (av, ’obsIter’)
choiceSet = [0,1,2]

cteLoglikelihood (choiceSet , Choice,’obsIter’)
availabilityStatistics (av,’obsIter’)

Each weight is mnormalized so that the sum of weights is equal to the
numer of entries (1906)

The normalization factor has been calculated during estimation

theWeight = Weight * 1906 / 0.814484

24

141 normalization_pt = 535.086

142 normalization_car = 1244.77

143 normalization_.sm = 126.147

144

145 BIOGEME_OBJECT.STATISTICS [’ Gender: males’]| = \

146 Sum(male, ’obsIter’)

147 BIOGEME_OBJECT. STATISTICS [> Gender: females’]| = \

148 Sum (female ,’obsIter’)

149 BIOGEME_OBJECT.STATISTICS [>’ Gender: unreported’] = \

150 Sum(unreportedGender , >obsIter’)

151 BIOGEME_OBJECT.STATISTICS[’Occupation: full time’]| = \

152 Sum(fulltime ,’obsIter’)

153 BIOGEME.OBJECT.STATISTICS|[’Sum of weights’] = \

154 Sum (Weight , >obsIter’)

155 BIOGEME_OBJECT.STATISTICS [>’ Number of entries’]| = \

156 Sum(l—exclude , >obsIter’)

157 BIOGEME_OBJECT. STATISTICS [> Normalization for elasticities PT’] = \
158 Sum(theWeight % prob_pt ,’obsIter’)

159 BIOGEME_OBJECT.STATISTICS [’Normalization for elasticities CAR’] = \
160 Sum(theWeight % prob_car ,’obsIter’)

161 BIOGEME_OBJECT.STATISTICS [’Normalization for elasticities SM’] = \
162 Sum(theWeight * prob_sm ,’obsIter’)

163 BIOGEME_OBJECT.STATISTICS [> Occupation: full time’| = Sum(fulltime ,’obsIter’)
164

165 # Define the dictionary for the simulation.

166 simulate = {’Disag. Elast. PT - Time’: elas_pt_time,

167 ’Disag. Elast. PT - Cost’: elas_pt_cost ,

168 ’Disag. Elast. Car - Time’: elas_car_time ,

169 ’Disag. Elast. Car - Cost’: elas_car_cost ,

170 ’Disag. Elast. Slow modes - Distance’: elas_sm_dist ,
171 ’Agg. Elast. PT - Time’: \

172 elas_pt_time * prob_pt / normalization_pt ,

173 ’Agg. Elast. PT - Cost’: \

174 elas_pt_cost * prob_pt / normalization_pt ,

175 ’Agg. Elast. Car - Time’: \

176 elas_car_time % prob_car / normalization_car ,

177 ’Agg. Elast. Car - Cost’: \

178 elas_car_cost * prob_car / normalization_car ,

179 ’Agg. Elast. Slow modes - Distance’: \

180 elas_sm_dist * prob_sm / normalization_sm

181 }

182
183 BIOGEME_ OBJECT .WEIGHT = theWeight
1832 BIOGEME_OBJECT .SIMULATE = Enumerate (simulate ,’obsIter’)

A.4 04 nestedElasticities . Py

Available at biogeme.epfl.ch/examples/indicators/python/O4nested Elasticities.py

25

http://biogeme.epfl.ch/examples/indicators/python/04nestedElasticities.py

© 00 9 O U s W N =

R R R R R R W W W W W W W W W W NN NN NN NN e e e e e e e e e
U R W N H O © 00N U R W N H O © 0N OO R W N H O © N O W N O

47
48

File 04nestedElasticities.py

Simple nested logit model for the Optima case study
Calculation of cross point elasticities

Thu May 11 16:38:05 2017

from biogeme import *
from headers import x
from statistics import x
from nested import x

Three alternatives :

CAR: automobile

PT: public transportation

SM: slow mode (walking, biking)

List of parameters and their estimated value.
ASC_CAR = Beta(’ASC_CAR’ ,0.261291,—10000,10000,0,’ASC_CAR’)
ASCSM = Beta(’ASC_SM’,0.0590204,—10000,10000,0,’>ASC_SM’)
BETA_ TIME FULLTIME = \

Beta (?BETA_TIME_FULLTIME’,—1.59709,—10000,10000,0,’BETA_TIME_FULLTIME’>)
BETA TIME_ OTHER = \

Beta (’BETA_TIME_OTHER’ ,—0.577362,—10000,10000,0,’ BETA_TIME_OTHER’)
BETA DIST MALE = \

Beta (?BETA_DIST_MALE’ ,—0.686327,—10000,10000,0,’ BETA_DIST_MALE’)
BETA DIST FEMALE = \

Beta (’BETA_DIST_FEMALE’ ,—0.83121,—10000,10000,0,’BETA_DIST_FEMALE’)
BETA DIST_ UNREPORTED = \

Beta(’BETA_DIST_UNREPORTED’ ,—0.702974,—10000,10000,0,’BETA_DIST_UNREPORTED’)
BETA_COST = \

Beta (’BETA_COST’,—0.716192,—10000,10000,0,>BETA_COST’)

##Definition of variables:
For numerical reasons, it is good practice to scale the data to
that the wvalues of the parameters are around 1.0.

Warning: when calculation derivatives , the total formula must be
known to Biogeme. In this case, the use of

"DefineVariable” must be omitted, if the derivatives must be

calculated with respect to the original variables (as is often the

#H# case)

TimePT_scaled = DefineVariable(’ TimePT_scaled’, TimePT / 200)
TimePT_scaled = TimePT / 200

#TimeCar_scaled = DefineVariable (’TimeCar_scaled’, TimeCar /

200)
TimeCar_scaled = TimeCar / 200

26

49

50
51
52

53
54
55

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

#MarginalCostPT_scaled = DefineVariable(’ MarginalCostPT_scaled’, MarginalCostPT

/ 10)
MarginalCostPT _scaled = MarginalCostPT / 10

#CostCarCHF _scaled = DefineVariable (’CostCarCHF_scaled’, CostCarCHF

/ 10°)
CostCarCHF _scaled = CostCarCHF / 10

#distance_km_scaled = DefineVariable(distance_km_scaled ’, distance_km
/5)

distance_km_scaled = distance_km / 5

male = DefineVariable (’male’,Gender = 1)

female = DefineVariable(’female’ ,Gender = 2)

unreportedGender = DefineVariable (’unreportedGender’ ,Gender =— —1)
fulltime = DefineVariable(’>fulltime’,OccupStat = 1)

notfulltime = DefineVariable(’notfulltime’,OccupStat != 1)

Definition of wtility functions:

VPT = BETA TIME FULLTIME * TimePT _scaled x fulltime + \
BETA TIME.OTHER * TimePT_scaled * notfulltime + \
BETA_COST x MarginalCostPT _scaled

V_CAR = ASC.CAR + \

BETA TIME FULLTIME x TimeCar_scaled * fulltime + \
BETA TIME OTHER % TimeCar_scaled * notfulltime + \
BETA_COST % CostCarCHF _scaled

VSM = ASCSM + \

BETA DISTMALE * distance_km_scaled x male + \
BETA DIST FEMALE * distance_km_scaled x female + \
BETA DIST_.UNREPORTED % distance_km_scaled % unreportedGender

Associate wutility functions with the numbering of alternatives
V = {0: VPT,

1: V_CAR,

2: V.SM}

Associate the availability conditions with the alternatives.
In this example all alternatives are available for each individual.

av = {0: 1,
1: 1,
2: 1}

DEFINITION OF THE NESTS:
1: mnests parameter
2: list of alternatives

NEST NOCAR = Beta (’NEST_NOCAR’ ,1.52853,1,10,0,’NEST_NOCAR’)

27

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

131
132
133
134

136
137
138
139
140
141
142
143

CAR = 1.0 , [1]
NO.CAR = NESTNOCAR , [0, 2]
nests = CAR, NO_CAR

All observations wverifying the following expression will not be
considered for estimation

exclude = (Choice = -1)

BIOGEME_OBJECT .EXCLUDE = exclude

##
This has been copied—pasted from the file OlnestedEstimation_param.py

##
Code for the sensitivity analysis generated after the estimation of the model

names = [’ASC_CAR’,’ASC_SM’ ,’BETA_COST’ ,’BETA_DIST_FEMALE’ ,’BETA_DIST_MALE’ 6 ’BETA_]
values = [[0.0100225,—0.0023271,0.00151986,0.00285251,0.00621963,0.00247439,0.02359
ve = bioMatrix (9 ,names, values)

#BIOGEME_OBJECT. VARCOVAR = vc

The choice model is a nested logit
prob_pt = nested (V,av,nests ,0)
prob_car = nested (V,av,nests 1)
prob_sm = nested (V,av, nests ,2)

elas_car_cost = Derive(prob_car,’MarginalCostPT’) x MarginalCostPT / prob_car
elas_car_time = Derive(prob_car,’TimePT’) % TimePT / prob_car

elas_pt_cost = Derive(prob_pt,’CostCarCHF’) x CostCarCHF / prob_pt
elas_pt_time = Derive(prob_pt,’TimeCar’) % TimeCar / prob_pt

Defines an itertor on the data
rowlterator (’obsIter’)

#Statistics

nullLoglikelihood (av,’obsIter’)

choiceSet = [0,1,2]

cteLoglikelihood (choiceSet , Choice ,’obsIter’)
availabilityStatistics (av,’obsIter’)

theWeight = Weight = 1906 / 0.814484

normalization_pt = 535.086
normalization_car = 1244.77
normalization_sm = 126.147

BIOGEME OBJECT. STATISTICS [’ Gender: males’] = \
Sum(male, ’obsIter’)
BIOGEME OBJECT.STATISTICS [’ Gender: females’] = \

28

144 Sum(female , >obsIter’)
145 BIOGEME_.OBJECT.STATISTICS [’Gender: unreported’]| = \

146 Sum(unreportedGender , > obsIter’)

147 BIOGEME_OBJECT.STATISTICS [> Occupation: full time’] = \

148 Sum(fulltime ,’obsIter’)

149 BIOGEME_OBJECT.STATISTICS [>Sum of weights’] = \

150 Sum (Weight , >obsIter’)

151 BIOGEME_OBJECT.STATISTICS [>’ Number of entries’]| = \

152 Sum(l—exclude , ’obsIter’)

1535 BIOGEME_OBJECT.STATISTICS [’Normalization for elasticities PT’] = \
154 Sum(theWeight * prob_pt ,’obsIter’)

155 BIOGEME_OBJECT.STATISTICS [’Normalization for elasticities CAR’] = \
156 Sum(theWeight % prob_car ,’obsIter’)

157 BIOGEME.OBJECT.STATISTICS [’Normalization for elasticities SM’] = \
158 Sum(theWeight * prob_sm ,’obsIter’)

159 BIOGEME_OBJECT.STATISTICS [’ Occupation: full time’] = Sum(fulltime ,’obsIter’)
160
161 # Define the dictionary for the simulation.

162 simulate = {’Disag. Elast. PT - Time car’: elas_pt_time,

163 ’Disag. Elast. PT - Cost car’: elas_pt_cost ,

164 ’Disag. Elast. Car - Time PT’: elas_car_time,

165 ’Disag. Elast. Car - Cost PT’: elas_car_cost ,

166 ’Agg. Elast. Car - Cost PT’: \

167 elas_car_cost * prob_car / normalization_car ,
168 ’Agg. Elast. Car - Time PT’: \

169 elas_car_time * prob_car / normalization_car ,
170 ’Agg. Elast. PT - Cost car’: \

171 elas_pt_cost * prob_pt / normalization_pt ,
172 ’Agg. Elast. PT - Time car’: \

173 elas_pt_time * prob_pt / normalization_pt}

174

175 # FEach weight is normalized so that the sum of weights is equal to the numer of en
176 BIOGEME_OBJECT .WEIGHT = theWeight

177 BIOGEME_OBJECT .SIMULATE = Enumerate (simulate ,’obsIter’)

A.5 05 nestedElasticities . 1904

Available at biogeme.epfl.ch/examples/indicators /python /05nestedElasticities. py

File 05nestedFElasticities.py

Simple nested logit model for the Optima case study
Calculation of direct arc elasticities

Thu May 11 16:38:05 2017

from biogeme import =*
from headers import x
from statistics import x
from nested import

© 0w 9 O gs W N

29

http://biogeme.epfl.ch/examples/indicators/python/05nestedElasticities.py

11 ## Three alternatives:

12 # CAR: automobile

13 # PT: public transportation

14 # SM: slow mode (walking, biking)

15

16 ### List of parameters and their estimated value.

17 ASC.CAR = Beta(?ASC_CAR’,0.261291,—10000,10000,0,’ASC_CAR’>)

15 ASCSM = Beta(?ASC_SM’,0.0590204,—10000,10000,0,”ASC_SM’>)

19 BETA TIME FULLTIME = \

20 Beta(’BETA_TIME_FULLTIME’ ,—1.59709,—10000,10000,0,’BETA_TIME_FULLTIME’)
21 BETA TIME_ OTHER = \

22 Beta (?BETA_TIME_OTHER’,—0.577362,—10000,10000,0,’BETA_TIME_OTHER’)

23 BETA DIST MALE = \

24 Beta(’BETA_DIST_MALE’,—0.686327,—10000,10000,0,’ BETA_DIST_MALE’)

25 BETA DIST FEMALE = \

26 Beta(’BETA_DIST_FEMALE’,—0.83121,—10000,10000,0,”BETA_DIST_FEMALE’)
27 BETA DIST_.UNREPORTED = \

28 Beta(’BETA_DIST_UNREPORTED’,—0.702974,—10000,10000,0,” BETA_DIST_UNREPORTED’)
20 BETA_COST = \

30 Beta(’BETA_CO0ST’,—0.716192,—10000,10000,0,’BETA_COST’)

31

32 ##Definition of variables:

33 # For numerical reasons, it is good practice to scale the data to

3¢ # that the wvalues of the parameters are around 1.0.

35

36 ### Warning: when calculation derivatives, the total formula must be
31 ### known to Biogeme. In this case, the use of

38 ### "DefineVariable” must be omitted, if the derivatives must be

309 ## calculated with respect to the original variables (as is often the

10 #H# case)

41

42 delta_dist =1

43

aa # TimePT_scaled = DefineVariable (' TimePT_scaled’, TimePT / 200)
45 TimePT_scaled = TimePT / 200

46

a7 #TimeCar_scaled = DefineVariable(’ TimeCar_scaled’, TimeCar /

200)

4s TimeCar_scaled = TimeCar / 200

49

50 #MarginalCostPT_scaled = DefineVariable(’ MarginalCostPT_scaled’, MarginalCostPT
/ 10)

51 MarginalCostPT_scaled = MarginalCostPT / 10

52

53 #CostCarCHF_scaled = DefineVariable(’ CostCarCHF _scaled’, CostCarCHF

/ 10)
54 CostCarCHF _scaled = CostCarCHF / 10

30

56

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

101
102
103

#distance_km_scaled = DefineVariable(distance_-km_scaled’, distance_km

/5)

distance_km_scaled = distance_km / 5

distance_km_scaled_after = (distance_.km + delta_dist) / 5

male = DefineVariable (’male’,Gender = 1)

female = DefineVariable(’female’ ,Gender = 2)

unreportedGender = DefineVariable (’unreportedGender’ ,Gender =— —1)
fulltime = DefineVariable(’fulltime’,OccupStat =— 1)

notfulltime = DefineVariable(’notfulltime’,OccupStat != 1)

Definition of wtility functions:

V_PT = BETA TIME FULLTIME * TimePT_scaled % fulltime + \

BETA TIME OTHER * TimePT _scaled * notfulltime + \
BETA_COST * MarginalCostPT _scaled

V_.CAR = ASCCAR + \

BETA_ TIME FULLTIME * TimeCar_scaled x fulltime + \
BETA TIME.OTHER * TimeCar_scaled * notfulltime + \
BETA COST % CostCarCHF _scaled

VSM = ASCSM + \

BETADIST MALE * distance_km_scaled * male + \
BETA DIST FEMALE * distance_km_scaled x female + \
BETA DIST_UNREPORTED % distance_km _scaled * unreportedGender

V_SM _after = ASCSM + \

BETADIST MALE * distance_km_scaled_after x male + \
BETADIST FEMALE % distance_km_scaled_after * female + \
BETA DIST_ UNREPORTED x distance_km _scaled_after *x unreportedGender

Associate wutility functions with the numbering of alternatives
V = {0: VPT,

1: V_.CAR,
2: V.SM}

V_after = {0: V_PT,

1: V_.CAR,
2: V_SM_after}

Associate the awvailability conditions with the alternatives.
In this example all alternatives are available for each individual.

av = {0: one,
1: one,
2: omne}

DEFINITION OF THE NESTS:

1:

nests parameter

31

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

140
141
142
143
144
145
146
147
148
149
150
151
152

2: list of alternatives

NEST NOCAR = Beta (’NEST_NOCAR’ ,1.52853,1,10,0,’NEST_NOCAR’)

CAR = 1.0 , [1]
NOCAR = NESTNOCAR , [0, 2]
nests = CAR, NO.CAR

All observations wverifying the following expression will not be
considered for estimation

exclude = (Choice = -1)

BIOGEME_OBJECT .EXCLUDE = exclude

##
This has been copied—pasted from the file 0OlInestedEstimation_param.py

##
Code for the sensitivity analysis generated after the estimation of the model

names — [’ASC_CAR’ ,”ASC_SM’ ,’BETA_COST’ ,”’BETA_DIST_FEMALE’ ,’BETA_DIST_MALE’ ,’BETA_]
values = [[0.0100225,—0.0023271,0.00151986,0.00285251,0.00621963,0.00247439,0.02359
ve = bioMatrix (9 ,names, values)

BIOGEME_OBJECT .VARCOVAR = vc

The choice model is a nested logit
prob_pt = nested (V,av,nests ,0)
prob_car = nested (V,av,nests 1)
prob_sm = nested (V,av,nests ,2)

prob_pt_after = nested (V_after ,av,nests ,0)

prob_car_after = nested(V_after ,av,nests 1)
prob_sm_after = nested (V_after ,av,nests ,2)
elas_sm_dist = (prob_sm_after — prob_sm) % distance_.km / (prob_sm % delta_dist)

Defines an iterator on the data
rowlterator (’obsIter’)

#Statistics

nullLoglikelihood (av, ’obsIter’)

choiceSet = [0,1,2]

cteLoglikelihood (choiceSet , Choice, ’obsIter’)
availabilityStatistics (av,’obsIter’)

theWeight = Weight * 1906 / 0.814484

normalization_pt = 535.086
normalization_car = 1244.77
normalization_sm = 126.147

BIOGEME OBJECT. STATISTICS [’ Gender: males’]| = \

32

153
154
155
156
157
158
159
160
161
162

164
165
166
167

169
170
171
172

174
175
176
177

179

© 0w N9 O O W N =

e e
o U W N = O

Sum(male , ’obsIter’)

BIOGEME OBJECT . STATISTICS [> Gender: females’| = \
Sum(female , ’obsIter’)

BIOGEME_OBJECT.STATISTICS [> Gender : unreported’] = \
Sum(unreportedGender , ’obsIter’)

BIOGEME OBJECT. STATISTICS [’Occupation: full time’]| = \
Sum(fulltime ,’obsIter’)

BIOGEME.OBJECT . STATISTICS [’ Sum of weights’] = \
Sum(Weight , >obsIter’)

BIOGEME OBJECT. STATISTICS [’ Number of entries’] = \
Sum(l—exclude , >obsIter’)

BIOGEME_OBJECT . STATISTICS [’ Normalization for elasticities PT’] = \
Sum(theWeight % prob_pt ,’obsIter’)

BIOGEME OBJECT.STATISTICS [’ Normalization for elasticities CAR’] = \
Sum(theWeight * prob_car ,’obsIter’)

BIOGEME OBJECT. STATISTICS [’ Normalization for elasticities SM’] = \

Sum(theWeight * prob_sm ,’obsIter’)
BIOGEME OBJECT . STATISTICS [> Occupation: full time’] = Sum(fulltime ,’obsIter’)

Define the dictionary for the simulation.
simulate = {’Disag. Elast. SM - Distance’: elas_sm_dist ,
’Agg. Elast. SM - Distance’: elas_sm_dist % prob_sm / normalization_sm

FEach weight is mnormalized so that the sum of weights is equal to the numer of en
BIOGEME _OBJECT .WEIGHT = theWeight
BIOGEME_OBJECT.SIMULATE = Enumerate (simulate ,’obsIter’)

A.6 06nestedWTP.py

Available at biogeme.epfl.ch/examples/indicators /python/06nested WTP.py

File 06nestedWTP.py
Simple nested logit model for the Optima case study
Thu May 11 17:23:04 2017

from biogeme import x
from headers import x
from statistics import x
from nested import x

Three alternatives :
CAR: automobile

PT: public transportation
SM: slow mode (walking, biking)

List of parameters and their estimated value.
ASC.CAR = Beta(’ASC_CAR’ ,0.261291,—10000,10000,0,>ASC_CAR’)

33

http://biogeme.epfl.ch/examples/indicators/python/06nestedWTP.py

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45
46
47

48
49
50

ASCSM = Beta(’ASC_SM’,0.0590204,—10000,10000,0,’ASC_SM’)
BETA_TIME FULLTIME = \

Beta (?BETA_TIME_FULLTIME’,—1.59709,—10000,10000,0,’BETA_TIME_FULLTIME’)
BETA_TIME_OTHER = \

Beta (?BETA_TIME_OTHER’,—0.577362,—10000,10000,0,”BETA_TIME_OTHER’)
BETA DIST MALE = \

Beta (?BETA_DIST_MALE’,—0.686327,—10000,10000,0,’BETA_DIST_MALE’)
BETA DIST FEMALE = \

Beta (’BETA_DIST_FEMALE’ ,—0.83121,—10000,10000,0,’BETA_DIST_FEMALE’)
BETA DIST_UNREPORTED = \

Beta (?BETA_DIST_UNREPORTED’,—0.702974,—10000,10000,0,’BETA_DIST_UNREPORTED’)

BETA_COST = \
Beta (?BETA_COST’ ,—0.716192,—10000,10000,0,’BETA_COST’)

##Definition of wvariables:
For numerical reasons, it is good practice to scale the data to
that the wvalues of the parameters are around 1.0.

##E Warning: when calculation derivatives , the total formula must be
known to Biogeme. In this case, the use of

"DefineVariable” must be omitted, if the derivatives must be

#H calculated with respect to the original variables (as is often the

case)

TimePT_scaled = DefineVariable(’TimePT_scaled’, TimePT / 200)
TimePT_scaled = TimePT / 200

#TimeCar_scaled = DefineVariable (’TimeCar_scaled’, TimeCar /

200)

TimeCar_scaled = TimeCar / 200

#MarginalCostPT_scaled = DefineVariable(’ MarginalCostPT_scaled’, MarginalCostPT
/ 10)

MarginalCostPT_scaled = MarginalCostPT / 10

#CostCarCHF _scaled = DefineVariable (’ CostCarCHF_scaled ’, CostCarCHF

/ 10°)
CostCarCHF _scaled = CostCarCHF / 10

#distance_km_scaled = DefineVariable(distance_km_scaled’, distance_km
/5)

distance_km_scaled = distance_km / 5

male = DefineVariable (’male’,Gender = 1)

female = DefineVariable(’female’ , Gender = 2)

unreportedGender = DefineVariable (’unreportedGender’ ,Gender =— —1)
fulltime = DefineVariable(’>fulltime’,OccupStat = 1)

34

62 mnotfulltime = DefineVariable (’notfulltime’,OccupStat != 1)
63

64 ### Definition of wutility functions:

65 V_PT = BETA TIME FULLTIME % TimePT_scaled x fulltime + \

66 BETA TIME OTHER % TimePT _scaled * notfulltime + \

67 BETA_COST % MarginalCostPT _scaled

68 V_.CAR = ASC_CAR + \

69 BETA_ TIME FULLTIME # TimeCar_scaled x fulltime + \

70 BETA TIME.OTHER * TimeCar_scaled * notfulltime + \

71 BETA COST % CostCarCHF _scaled

2 VSM = ASCSM + \

73 BETADIST MALE * distance_km_scaled * male + \

74 BETA DIST FEMALE * distance_km_scaled x female + \

75 BETA DIST_ UNREPORTED * distance_km_scaled * unreportedGender

76
77 # It is advised to use the Derive operator, in order to take care
78 # automatically of the scaled variables.
79
so WIPPT.TIME = Derive (VPT, ’TimePT’) / Derive (V_PT, ’MarginalCostPT’)
s1 WIP.CARTIME = Derive (V.CAR, ’TimeCar’) / Derive (V.CAR,’CostCarCHF’)
82
83 # All observations verifying the following expression will not be
sa # considered for estimation
s5 exclude = (Choice = -1)
s BIOGEME_OBJECT.EXCLUDE = exclude
87
88
89 ##
o0 ## This has been copied—pasted from the file 0OlnestedEstimation_param.py
91

##

92 ## Code for the semsitivity analysis generated after the estimation of the model

03 names = [’ASC_CAR’,’ASC_SM’ ,>BETA_COST’,’BETA_DIST_FEMALE’,’BETA_DIST_MALE’,’BETA_
o4 values = [[0.0100225,—0.0023271,0.00151986,0.00285251,0.00621963,0.00247439,0.02359
95 vc = bioMatrix (9 ,names, values)

96 BIOGEME_OBJECT.VARCOVAR = vc

97

98

9 # Defines an itertor on the data

100 rowlterator (’obsIter’)

101

102 theWeight = Weight * 1906 / 0.814484
103

104

105 BIOGEME_OBJECT.STATISTICS [’ Gender: males’| = \

106 Sum(male , ’obsIter’)

107 BIOGEME_OBJECT.STATISTICS [> Gender: females’] = \

108 Sum (female ,’obsIter’)

109 BIOGEME_OBJECT.STATISTICS [> Gender: unreported’] = \
110 Sum(unreportedGender , >obsIter’)

35

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

BIOGEME_OBJECT. STATISTICS [’ Occupation: full time’]| = \
Sum(fulltime ,>obsIter’)

BIOGEME_OBJECT . STATISTICS[’Sum of weights’] = \
Sum(Weight , >obsIter’)

BIOGEME OBJECT. STATISTICS [’ Number of entries’] = \
Sum(l—exclude , >obsIter’)

simulate = {’PT: Time’:TimePT,
’PT: Value of time (CHF/min)’: WTP_PT.TIME,
’PT: Value of time (CHF/h)’: 60 x WTPPT.TIME,
’Car: Time’:TimeCar,
’Car: Value of time (CHF/min)’: WTP.CARTIME,
’Car: Value of time (CHF/h)’: 60 x WTP_.CAR.TIME,
’Male’ :male,
’Full time’:fulltime}

Fach weight is normalized so that the sum of weights is equal to the

number of entries (1906).
BIOGEME_OBJECT .WEIGHT = theWeight
BIOGEME_OBJECT.SIMULATE = Enumerate (simulate , ’obsIter’)

36

References

Atasoy, B., Glerum, A. and Bierlaire, M. (2013). Attitudes towards mode
choice in switzerland, disP - The Planning Review 49(2): 101-117.

Bierlaire, M. (2016). Pythonbiogeme: a short introduction, Technical Re-
port TRANSP-OR 160706, Transport and Mobility Laboratory, Ecole
Polytechnique Fédérale de Lausanne.

37

	The model
	Market shares and revenues
	Elasticities
	Point elasticities
	Arc elasticities
	Using PythonBiogeme for point elasticities
	Using PythonBiogeme for cross elasticities
	Using PythonBiogeme for arc elasticities

	Willingness to pay
	Conclusion
	Complete specification files
	01nestedEstimation.py
	02nestedSimulation.py
	03nestedElasticities.py
	04nestedElasticities.py
	05nestedElasticities.py
	06nestedWTP.py

